A Robust, Safe, and Scalable Magnetic Nanoparticle Workflow for RNA Extraction of Pathogens from Clinical and Wastewater Samples

Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global shortage of proprietary commercial reagents and BSL‐2 laboratories to safely perform testing. Therefore, alternative solutions are urgently nee...

Full description

Saved in:
Bibliographic Details
Published inGlobal challenges Vol. 5; no. 4; pp. 2000068 - n/a
Main Authors Ramos‐Mandujano, Gerardo, Salunke, Rahul, Mfarrej, Sara, Rachmadi, Andri Taruna, Hala, Sharif, Xu, Jinna, Alofi, Fadwa S., Khogeer, Asim, Hashem, Anwar M., Almontashiri, Naif A. M., Alsomali, Afrah, Shinde, Digambar B., Hamdan, Samir, Hong, Pei‐Ying, Pain, Arnab, Li, Mo
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global shortage of proprietary commercial reagents and BSL‐2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open‐source method, magnetic‐nanoparticle‐aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real‐world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol‐chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID‐19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS‐CoV‐2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field‐deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens. One important bottleneck in the diagnosis and surveillance of COVID‐19 is the shortage of kits for RNA extraction. Magnetic‐nanoparticle‐aided viral RNA isolation from contagious samples (MAVRICS) is an open‐source, safe, fast, and scalable method for RNA extraction. MAVRICS rivals commercial kits but requires minimal materials, and thus could become an enabling technology for widespread community testing of diverse pathogens.
AbstractList Abstract Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global shortage of proprietary commercial reagents and BSL‐2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open‐source method, magnetic‐nanoparticle‐aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real‐world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol‐chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID‐19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS‐CoV‐2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field‐deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens.
Molecular diagnosis and surveillance of pathogens such as SARS-CoV-2 depend on nucleic acid isolation. Pandemics at the scale of COVID-19 can cause a global shortage of proprietary commercial reagents and BSL-2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open-source method, magnetic-nanoparticle-aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real-world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol-chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID-19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS-CoV-2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field-deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens.Molecular diagnosis and surveillance of pathogens such as SARS-CoV-2 depend on nucleic acid isolation. Pandemics at the scale of COVID-19 can cause a global shortage of proprietary commercial reagents and BSL-2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open-source method, magnetic-nanoparticle-aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real-world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol-chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID-19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS-CoV-2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field-deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens.
Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global shortage of proprietary commercial reagents and BSL‐2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open‐source method, magnetic‐nanoparticle‐aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real‐world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol‐chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID‐19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS‐CoV‐2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field‐deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens. One important bottleneck in the diagnosis and surveillance of COVID‐19 is the shortage of kits for RNA extraction. Magnetic‐nanoparticle‐aided viral RNA isolation from contagious samples (MAVRICS) is an open‐source, safe, fast, and scalable method for RNA extraction. MAVRICS rivals commercial kits but requires minimal materials, and thus could become an enabling technology for widespread community testing of diverse pathogens.
Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global shortage of proprietary commercial reagents and BSL‐2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open‐source method, m agnetic‐nanoparticle‐ a ided v iral R NA i solation from c ontagious s amples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real‐world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol‐chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID‐19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS‐CoV‐2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field‐deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens. One important bottleneck in the diagnosis and surveillance of COVID‐19 is the shortage of kits for RNA extraction. Magnetic‐nanoparticle‐aided viral RNA isolation from contagious samples (MAVRICS) is an open‐source, safe, fast, and scalable method for RNA extraction. MAVRICS rivals commercial kits but requires minimal materials, and thus could become an enabling technology for widespread community testing of diverse pathogens.
Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global shortage of proprietary commercial reagents and BSL‐2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open‐source method, magnetic‐nanoparticle‐aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real‐world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol‐chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID‐19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS‐CoV‐2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field‐deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens.
Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global shortage of proprietary commercial reagents and BSL‐2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open‐source method, m agnetic‐nanoparticle‐ a ided v iral R NA i solation from c ontagious s amples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real‐world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol‐chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID‐19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS‐CoV‐2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field‐deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens.
Author Alsomali, Afrah
Pain, Arnab
Hamdan, Samir
Alofi, Fadwa S.
Almontashiri, Naif A. M.
Salunke, Rahul
Hala, Sharif
Shinde, Digambar B.
Hong, Pei‐Ying
Rachmadi, Andri Taruna
Mfarrej, Sara
Hashem, Anwar M.
Xu, Jinna
Ramos‐Mandujano, Gerardo
Khogeer, Asim
Li, Mo
AuthorAffiliation 1 Biological and Environmental Sciences and Engineering Division (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia
4 Plan and Research Department General Directorate of Health Affairs Makkah Region Ministry of Health Mecca 11176 Saudi Arabia
2 King Abdullah International Medical Research Centre King Saud University for Health Sciences Ministry of National Guard Health Affairs Jeddah 21859 Saudi Arabia
10 Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia
3 Infectious Diseases Department King Fahad Hospital Almadinah Almunwarah 11525 Saudi Arabia
5 Vaccines and Immunotherapy Unit King Fahd Medical Research Center King Abdulaziz University Jeddah 21859 Saudi Arabia
9 Infectious Diseases Department King Abdullah Medical Complex Jeddah 24246 Saudi Arabia
8 Center for Genetics and Inherited Diseases Taibah University Almadinah Almunwarah 71491 Sau
AuthorAffiliation_xml – name: 2 King Abdullah International Medical Research Centre King Saud University for Health Sciences Ministry of National Guard Health Affairs Jeddah 21859 Saudi Arabia
– name: 1 Biological and Environmental Sciences and Engineering Division (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia
– name: 10 Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia
– name: 3 Infectious Diseases Department King Fahad Hospital Almadinah Almunwarah 11525 Saudi Arabia
– name: 7 College of Applied Medical Sciences Taibah University Almadinah Almunwarah 71491 Saudi Arabia
– name: 4 Plan and Research Department General Directorate of Health Affairs Makkah Region Ministry of Health Mecca 11176 Saudi Arabia
– name: 5 Vaccines and Immunotherapy Unit King Fahd Medical Research Center King Abdulaziz University Jeddah 21859 Saudi Arabia
– name: 9 Infectious Diseases Department King Abdullah Medical Complex Jeddah 24246 Saudi Arabia
– name: 8 Center for Genetics and Inherited Diseases Taibah University Almadinah Almunwarah 71491 Saudi Arabia
– name: 6 Department of Medical Microbiology and Parasitology Faculty of Medicine King Abdulaziz University Jeddah 21859 Saudi Arabia
Author_xml – sequence: 1
  givenname: Gerardo
  orcidid: 0000-0002-5019-4291
  surname: Ramos‐Mandujano
  fullname: Ramos‐Mandujano, Gerardo
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Rahul
  surname: Salunke
  fullname: Salunke, Rahul
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Sara
  surname: Mfarrej
  fullname: Mfarrej, Sara
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Andri Taruna
  surname: Rachmadi
  fullname: Rachmadi, Andri Taruna
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Sharif
  surname: Hala
  fullname: Hala, Sharif
  organization: Ministry of National Guard Health Affairs
– sequence: 6
  givenname: Jinna
  surname: Xu
  fullname: Xu, Jinna
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Fadwa S.
  surname: Alofi
  fullname: Alofi, Fadwa S.
  organization: King Fahad Hospital
– sequence: 8
  givenname: Asim
  surname: Khogeer
  fullname: Khogeer, Asim
  organization: Ministry of Health
– sequence: 9
  givenname: Anwar M.
  surname: Hashem
  fullname: Hashem, Anwar M.
  organization: King Abdulaziz University
– sequence: 10
  givenname: Naif A. M.
  surname: Almontashiri
  fullname: Almontashiri, Naif A. M.
  organization: Taibah University
– sequence: 11
  givenname: Afrah
  surname: Alsomali
  fullname: Alsomali, Afrah
  organization: Infectious Diseases Department
– sequence: 12
  givenname: Digambar B.
  surname: Shinde
  fullname: Shinde, Digambar B.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 13
  givenname: Samir
  surname: Hamdan
  fullname: Hamdan, Samir
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 14
  givenname: Pei‐Ying
  surname: Hong
  fullname: Hong, Pei‐Ying
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 15
  givenname: Arnab
  surname: Pain
  fullname: Pain, Arnab
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 16
  givenname: Mo
  orcidid: 0000-0003-0827-8907
  surname: Li
  fullname: Li, Mo
  email: mo.li@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33786197$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFvGyEQhVdVoiZNc-2xQuqlh9gFdmHZSyXLSpNISVolrXJEsxhsXAwu7NbNrT-9OHbSJFJVLqDhvW9mYF4VOz54XRRvCB4SjOmHqZrRIcUU58XFi2KfYsYHnFd859F5rzhMaZ4llBJcCvGy2CvLWnDS1PvF7xG6Cm2fuiN0DUYfIfATdK3AQes0uoCp151V6BJ8WELMxxy9CfG7cWGFTIjo6nKEjn91EVRng0fBoC_QzcJU-4RMDAs0dtbbDLwj30Dq9Ao6HXO6xdLp9LrYNeCSPtzuB8W3T8dfx6eD888nZ-PR-UBxTMSgatqyBMVaroyCFgQBTlWNKwYTLLRQwpSKNCzHSEn0RLVEEWMaxihrKSvLg-Jsw50EmMtltAuItzKAlXeBEKdy25-sORZYUcOENhUlKqclE0rzk1FeKUMy6-OGtezbRc6lfe7fPYE-vfF2Jqfhp6ybhhHcZMD7LSCGH71OnVzYpLRz4HXok6QM17wmWLAsffdMOg999Pmp1qqGNFVdiqx6-7iih1LuPzoLqo1AxZBS1EYq28H6y3KB1kmC5Xqk5Hqk5MNIZdvwme2e_E9DszGsrNO3_1HLk_Ep_ev9A07B3UU
CitedBy_id crossref_primary_10_1515_ntrev_2022_0001
crossref_primary_10_3389_fpubh_2021_808751
crossref_primary_10_1021_acs_est_4c06737
crossref_primary_10_1038_s41598_023_47190_w
crossref_primary_10_1371_journal_pone_0291900
crossref_primary_10_1080_09603123_2021_1949437
crossref_primary_10_1186_s12985_022_01935_7
crossref_primary_10_1364_OE_469937
Cites_doi 10.1038/nprot.2006.83
10.1093/nar/23.22.4742
10.1371/journal.pbio.3000107
10.1016/j.jviromet.2010.07.018
10.1016/j.cell.2020.03.035
10.1038/s41587-020-0588-y
10.1038/s41598-020-73616-w
10.1093/infdis/jiaa507
10.1016/j.ceramint.2020.07.029
10.1016/j.jallcom.2020.155422
10.5607/en20009
10.1088/1468-6996/16/2/023501
10.1126/science.abb9263
10.1128/AEM.70.4.2154-2160.2004
10.1002/cpcy.77
10.3390/v12060622
10.1016/j.jviromet.2015.07.002
10.1038/s41598-020-75798-9
10.1016/j.ceramint.2019.11.265
10.1128/JCM.28.3.495-503.1990
10.3390/v12080863
10.1021/acsinfecdis.0c00464
10.1159/000485020
10.1056/NEJMoa2001191
10.1021/acs.estlett.0c00357
10.1038/s41467-020-18611-5
10.1021/acsomega.0c03332
10.1128/AEM.02354-13
10.1088/1742-6596/1644/1/012036
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley‐VCH GmbH
2021 The Authors. Global Challenges published by Wiley‐VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Global Challenges published by Wiley‐VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.1002/gch2.202000068
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
PubMed
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Public Health
EISSN 2056-6646
EndPage n/a
ExternalDocumentID oai_doaj_org_article_76080c2f58ef421cac51d22786264cf1
PMC7995109
33786197
10_1002_gch2_202000068
GCH2202000068
Genre article
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Deanship of Scientific Research
  funderid: AMS‐12
– fundername: Ministry of Education in Saudi Arabia
– fundername: Research and Innovation
– fundername: KAUST Office of Sponsored Research (OSR)
  funderid: BAS/1/1080‐01
– fundername: ;
  grantid: AMS‐12
– fundername: KAUST Office of Sponsored Research (OSR)
  grantid: BAS/1/1080‐01
GroupedDBID 0R~
1OC
24P
7XC
8CJ
8FE
8FH
AAHHS
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1J
EBS
EDH
EJD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IEP
ITC
KQ8
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
RPM
WIN
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6018-49b33ac5b6cfcaba81a62c7045ad08e8c8f3c1952c7131edcb1c1ff95525b2533
IEDL.DBID BENPR
ISSN 2056-6646
IngestDate Wed Aug 27 01:30:33 EDT 2025
Thu Aug 21 18:29:15 EDT 2025
Fri Jul 11 12:16:18 EDT 2025
Mon Jul 14 10:42:48 EDT 2025
Mon Jul 21 05:53:48 EDT 2025
Tue Jul 01 04:22:58 EDT 2025
Thu Apr 24 22:52:01 EDT 2025
Wed Jan 22 16:30:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords influenza
nucleic acid purification
magnetic nanoparticles
SARS‐CoV‐2
wastewater surveillance
Language English
License Attribution
2021 The Authors. Global Challenges published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6018-49b33ac5b6cfcaba81a62c7045ad08e8c8f3c1952c7131edcb1c1ff95525b2533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5019-4291
0000-0003-0827-8907
OpenAccessLink https://www.proquest.com/docview/2509194738?pq-origsite=%requestingapplication%
PMID 33786197
PQID 2509194738
PQPubID 4371421
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_76080c2f58ef421cac51d22786264cf1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7995109
proquest_miscellaneous_2507671085
proquest_journals_2509194738
pubmed_primary_33786197
crossref_citationtrail_10_1002_gch2_202000068
crossref_primary_10_1002_gch2_202000068
wiley_primary_10_1002_gch2_202000068_GCH2202000068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Global challenges
PublicationTitleAlternate Glob Chall
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 16
2020; 382
2015; 223
2017; 22
2010; 169
2020; 181
2020; 369
2019; 17
2020; 38
2020; 58
2020; 222
2018; 41
2020; 12
2020; 323
2006; 1
2020; 11
2020; 10
2020; 7
2020; 6
2020; 5
2004; 70
1990; 28
2013; 79
2020
2020; 93
1995; 23
2020; 46
2020; 1644
2020; 835
2020; 29
2017; 129
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
Dimke H. (e_1_2_10_18_1) 2020
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
Bi C. (e_1_2_10_3_1) 2020
e_1_2_10_9_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Wang W. (e_1_2_10_6_1) 2020; 323
Kochel T. J. (e_1_2_10_10_1) 2017; 22
Somvanshi S. B. (e_1_2_10_35_1) 2020
Chen H. (e_1_2_10_13_1) 2020; 58
Haddad Y. (e_1_2_10_29_1) 2017; 129
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 23
  start-page: 4742
  year: 1995
  publication-title: Nucleic Acids Res.
– volume: 169
  start-page: 269
  year: 2010
  publication-title: J. Virol. Methods
– volume: 58
  year: 2020
  publication-title: J. Clin. Microbiol.
– volume: 46
  start-page: 7642
  year: 2020
  publication-title: Ceram. Int.
– volume: 181
  start-page: 223
  year: 2020
  publication-title: Cell
– year: 2020
  publication-title: Mater. Res. Innovations
– volume: 323
  start-page: 1843
  year: 2020
  publication-title: JAMA
– volume: 835
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 129
  year: 2017
  publication-title: J. Vis. Exp.
– volume: 382
  start-page: 929
  year: 2020
  publication-title: N. Engl. J. Med.
– volume: 222
  start-page: 1462
  year: 2020
  publication-title: J. Infect. Dis.
– volume: 79
  start-page: 7413
  year: 2013
  publication-title: Appl. Environ. Microbiol.
– volume: 93
  year: 2020
  publication-title: Curr. Protoc. Cytom.
– volume: 16
  year: 2015
  publication-title: Sci. Technol. Adv. Mater.
– volume: 29
  start-page: 107
  year: 2020
  publication-title: Exp. Neurobiol.
– volume: 1
  start-page: 581
  year: 2006
  publication-title: Nat. Protoc.
– volume: 7
  start-page: 511
  year: 2020
  publication-title: Environ. Sci. Technol. Lett.
– volume: 17
  year: 2019
  publication-title: PLoS Biol.
– volume: 369
  start-page: 582
  year: 2020
  publication-title: Science
– volume: 46
  year: 2020
  publication-title: Ceram. Int.
– volume: 1644
  year: 2020
  publication-title: J. Phys. Conf. Ser.
– volume: 5
  year: 2020
  publication-title: ACS Omega
– volume: 70
  start-page: 2154
  year: 2004
  publication-title: Appl. Environ. Microbiol.
– volume: 12
  start-page: 622
  year: 2020
  publication-title: Viruses
– volume: 38
  start-page: 927
  year: 2020
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 863
  year: 2020
  publication-title: Viruses
– year: 2020
– volume: 41
  start-page: 139
  year: 2018
  publication-title: Oncol. Res. Treat.
– volume: 22
  start-page: 52
  year: 2017
  publication-title: Adv. Pharm. Bull.
– volume: 28
  start-page: 495
  year: 1990
  publication-title: J. Clin. Microbiol.
– year: 2020
  publication-title: medRxiv.
– volume: 10
  year: 2020
  publication-title: Sci. Rep.
– volume: 11
  start-page: 4812
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2513
  year: 2020
  publication-title: ACS Infect. Dis.
– volume: 223
  start-page: 13
  year: 2015
  publication-title: J. Virol. Methods
– year: 2020
  ident: e_1_2_10_35_1
  publication-title: Mater. Res. Innovations
– ident: e_1_2_10_9_1
  doi: 10.1038/nprot.2006.83
– ident: e_1_2_10_27_1
  doi: 10.1093/nar/23.22.4742
– ident: e_1_2_10_30_1
  doi: 10.1371/journal.pbio.3000107
– ident: e_1_2_10_42_1
  doi: 10.1016/j.jviromet.2010.07.018
– ident: e_1_2_10_4_1
  doi: 10.1016/j.cell.2020.03.035
– ident: e_1_2_10_32_1
  doi: 10.1038/s41587-020-0588-y
– ident: e_1_2_10_16_1
  doi: 10.1038/s41598-020-73616-w
– ident: e_1_2_10_15_1
  doi: 10.1093/infdis/jiaa507
– year: 2020
  ident: e_1_2_10_3_1
  publication-title: medRxiv.
– ident: e_1_2_10_36_1
– ident: e_1_2_10_23_1
  doi: 10.1016/j.ceramint.2020.07.029
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jallcom.2020.155422
– ident: e_1_2_10_19_1
  doi: 10.5607/en20009
– ident: e_1_2_10_31_1
  doi: 10.1088/1468-6996/16/2/023501
– ident: e_1_2_10_2_1
  doi: 10.1126/science.abb9263
– year: 2020
  ident: e_1_2_10_18_1
  publication-title: medRxiv.
– ident: e_1_2_10_40_1
  doi: 10.1128/AEM.70.4.2154-2160.2004
– ident: e_1_2_10_12_1
  doi: 10.1002/cpcy.77
– ident: e_1_2_10_14_1
  doi: 10.3390/v12060622
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jviromet.2015.07.002
– ident: e_1_2_10_37_1
  doi: 10.1038/s41598-020-75798-9
– ident: e_1_2_10_8_1
– ident: e_1_2_10_24_1
  doi: 10.1016/j.ceramint.2019.11.265
– ident: e_1_2_10_28_1
  doi: 10.1128/JCM.28.3.495-503.1990
– ident: e_1_2_10_33_1
  doi: 10.3390/v12080863
– ident: e_1_2_10_39_1
  doi: 10.1021/acsinfecdis.0c00464
– ident: e_1_2_10_20_1
– volume: 129
  start-page: e56815
  year: 2017
  ident: e_1_2_10_29_1
  publication-title: J. Vis. Exp.
– ident: e_1_2_10_38_1
  doi: 10.1159/000485020
– ident: e_1_2_10_5_1
  doi: 10.1056/NEJMoa2001191
– ident: e_1_2_10_1_1
– volume: 323
  start-page: 1843
  year: 2020
  ident: e_1_2_10_6_1
  publication-title: JAMA
– volume: 58
  start-page: e00958
  year: 2020
  ident: e_1_2_10_13_1
  publication-title: J. Clin. Microbiol.
– ident: e_1_2_10_7_1
  doi: 10.1021/acs.estlett.0c00357
– volume: 22
  start-page: 52
  year: 2017
  ident: e_1_2_10_10_1
  publication-title: Adv. Pharm. Bull.
– ident: e_1_2_10_34_1
  doi: 10.1038/s41467-020-18611-5
– ident: e_1_2_10_22_1
  doi: 10.1021/acsomega.0c03332
– ident: e_1_2_10_41_1
  doi: 10.1128/AEM.02354-13
– ident: e_1_2_10_21_1
  doi: 10.1088/1742-6596/1644/1/012036
– ident: e_1_2_10_17_1
– ident: e_1_2_10_26_1
  doi: 10.1088/1468-6996/16/2/023501
SSID ssj0002210388
Score 2.237429
Snippet Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a global...
Molecular diagnosis and surveillance of pathogens such as SARS-CoV-2 depend on nucleic acid isolation. Pandemics at the scale of COVID-19 can cause a global...
Abstract Molecular diagnosis and surveillance of pathogens such as SARS‐CoV‐2 depend on nucleic acid isolation. Pandemics at the scale of COVID‐19 can cause a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2000068
SubjectTerms Acids
Automation
Biohazards
Chloroform
COVID-19
Deactivation
Influenza
Laboratories
magnetic nanoparticles
Nanoparticles
nucleic acid purification
Nucleic acids
Pandemics
Pathogens
Phenols
Public health
Reagents
Respiratory syncytial virus
Ribonucleic acid
RNA
SARS‐CoV‐2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Viruses
Wastewater
wastewater surveillance
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQbwItMhKCS6PGjuPHcVm1rJC2Qi0VvUWOY_ehVYI2u6JHfjozTjbaFaBeONqxxtbM2P7seL4h5L3kwjlXm5TVvEqF1CI12udpYWBzsYJpG7M1zE_l7EJ8uSwut1J94Zuwnh64V9yRkoBpHA-F9kFw5qwrQCxXiMSFC_HgA3ve1mHqNpK6IPG33rA0Zvzoyl1j3BWPC7Te2YUiWf_fEOafDyW3AWzcgU4ek0cDdKSTfshPyAPfPCXJHFBvu4yX4_QDnS5uAILG0jPya0LP2mrdrQ7puQ3-kNqmpudgFAyXonN71WAEI4UFFk7OvVSKl-dh0f6kAGbp2emEHt-tln3wA20D_QqAsQWf6yjGpdCBVXQRJX-3Hd7EgaGgOyQd7p6Ti5Pjb9NZOmRcSB0czHQqTJXnoOFKuuBsZTWzkjsFsM_Wmfba6ZA7ZgqoYzkDvVTMsRBMUfCi4oAcX5C9pm38K0JVlXlTI1ySuZDWaO15YRWXdS24D1lC0o0FSjfQkWNWjEXZEynzEi1WjhZLyMex_Y-eiOOfLT-hQcdWSKAdK8CtykGb5X1ulZD9jTuUw6zuSo7oygiVQx_vxs8wH_Eni218u45tlFQY05GQl733jCPJc5DPjEqI2vGrnaHufmluriPnN_L2scwkhEcPvEcF5efpjI-l1_9DIW_IQ47PeeKjpX2yt1qu_QHgsVX1Nk693xGMLt0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLgg3gQKMhKCS6OuHceP47JqWSFtVbVU9BY5jr2ttEqqza7gyE9nxsmGRoCQONpxbMczY3-eeD4T8k5y4ZyrTMoqXqZCapEa7bM0N7C4WMG0jbc1LE7k_EJ8vswvb0Xxd_wQg8MNLSPO12jgtmwPf5GGLt0VBlLxOOPqu-Qextciez4Xp4OXhXMkAI_X0sFKn0op5I65ccIPx1WMVqZI4P8n1Pn74cnboDauSscPyYMeTtJpJ_9H5I6vH5NkAUi4WUeHOX1PZ6trgKUx9YT8mNKzpty2mwN6boM_oLau6DkICkOo6MIua4xqpDDpwm66q5WiQz2smm8UAC49O5nSo--bdRcQQZtATwFENqCHLcVYFdozja5izV9ti945EB40h0TE7VNycXz0ZTZP-1sYUgebNZ0KU2aZdXkpXXC2tJpZyZ0CKGirifba6ZA5ZnLIYxmDcSmZYyGYPOd5yQFNPiN7dVP7F4SqcuJNhRBKZkJao7XnuVVcVpXgPkwSku4kULieohxvylgVHbkyL1BixSCxhHwYyt905Bx_LfkRBTqUQlLtmNGsl0U_moWSAJ8dD7n2QXDm4KNBg7nCTZ9wgSVkf6cORW_pbcERcRmhMmjj7fAYbBR_vNjaN9tYRkmFcR4Jed5pz9CTLIP6mVEJUSO9GnV1_KS-voo84MjlxyYmITxq4D-GoPg0m_Mh9fJ_XnpF7nM80hMPLu2Tvc16618DJtuUb6LZ_QTGBCuy
  priority: 102
  providerName: Wiley-Blackwell
Title A Robust, Safe, and Scalable Magnetic Nanoparticle Workflow for RNA Extraction of Pathogens from Clinical and Wastewater Samples
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgch2.202000068
https://www.ncbi.nlm.nih.gov/pubmed/33786197
https://www.proquest.com/docview/2509194738
https://www.proquest.com/docview/2507671085
https://pubmed.ncbi.nlm.nih.gov/PMC7995109
https://doaj.org/article/76080c2f58ef421cac51d22786264cf1
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdr-zIYY-s-6q4LGoztpaaRLMvy00hDujBICOnK-mZkWUoLwe7ihO5xf_ruZMdb2NejZSHbutPdT2fd7wh5K7kwxhRpyAqeh0IqEabKRmGcgnPRgintqzVMpnJ8JT5dx9dtwK1uj1VubaI31EVlMEZ-xtGzpSKJ1Ie7ryFWjcK_q20JjT1yACZYwebr4Hw0nc27KAvnSADuy9KBpw-lFHLL3NjnZwtzg7lY3BttteOZPIH_n1Dn74cnfwW13itdPCGPWzhJB438n5IHtjwkwQSQcLXyAXP6jg6XtwBL_dUhedTE6WiTfvSMfB_QeZVv6vUpvdTOnlJdFvQSBIcpVXSiFyVmOVIwwrC7bp5CMcDultU9BcBL59MBHX1br5oECVo5OgNQWYFe1hRzV2jLPLr0I3_RNUbrQJjwOCQmrp-Tq4vR5-E4bKsyhAY2byoUaR5F2sS5NM7oXCumJTcJQENd9JVVRrnIsDSGNhYxmKecGeZcGsc8zjmgyxdkv6xKe0RokvdtWiCkkpGQOlXK8lgnXBaF4Nb1AxJuJZKZlrIcK2css4ZsmWcowayTYEDed_3vGrKOv_Y8RwF3vZBk2zdUq0XWzmaWSIDThrtYWSc4M_DRoNE8wU2gMI4F5GSrHlm78uvsp54G5E13G9Ys_ojRpa02vk8iE8z7CMjLRpu6N4kiGJ-lSUCSHT3bedXdO-XtjecFR24_1k8Dwr1G_mcKso_DMe-ujv_9La_IQ46HefyRpROyv15t7GtAY-u8R_a4mPXahdfzMY0fvAwxHA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam7gEkhGDcAgOMxOVl0RrHcZwHhLrS0bG1mrpN21twHKebVCWjaTV44xfxGznHuUDF7WmPSSzncm6fT3y-Q8hLwbjWOo1cL2WJy4XkbiSN7wYRBBfFPalst4bRWAxP-Mez4GyNfG9qYXBbZeMTraNOC4058m2GkS3ioS_fXX52sWsU_l1tWmhUarFvvl7Bkq18u_ce5PuKsd3BcX_o1l0FXA2LD-nyKPF9pYNE6EyrRElPCaZDgDYq7Uojtcx87UUBnPN8z6Q68bSXZVEQsCBhASZAweWvcx9m65D1ncH4cNJmdRhDwnHbBg-QhSsEFw1TZJdtT_U51n4xGyTkSiS0DQP-hHJ_36z5K4i2UXD3Drldw1faq_TtLlkz-QZxRoC8i7lN0NPXtD-7ABhsjzbIrSovSKtyp3vkW49OimRZLrbokcrMFlV5So9AUbCEi47UNMeqSgpOH1bz1V0oJvSzWXFFAWDTybhHB18W86oggxYZPQQQW4AdlBRrZWjNdDqzM5-qErODoDxwOyRCLu-Tk2uR1wPSyYvcPCI0TLomShHCCZ8LFUlpWKBCJtKUM5N1HeI2Eol1TZGOnTpmcUXuzGKUYNxK0CFv2vGXFTnIX0fuoIDbUUjqbU8U82lcf804FADfNcsCaTLOPA0vDRbEQlx0cp15Dtls1COuPU0Z_7QLh7xoL4OPwB8_KjfF0o4JRYh1Jg55WGlT-yS-D_N7UeiQcEXPVh519Up-cW55yJFL0OtGDmFWI__zCeIP_SFrjx7_-12ekxvD49FBfLA33n9CbjLcSGS3S22SzmK-NE8BCS6SZ7X5UfLpui3-B9ZsbGk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkJICMG4BQYYicvLosZO4jgPCHVdS8doVXVM7C04jt1NqpLRtBq88bv4dRw7F6i4Pe0xiZXEObfvnJwLQs8ZDaSUWeySjKZuwHjgxlz5bhiDcREB4cJOaxhP2OgkeHcanm6h700tjEmrbHSiVdRZIU2MvEuNZYuDyOddXadFTA-Gby4-u2aClPnT2ozTqFjkSH29BPetfH14ALR-Qelw8KE_cusJA64ER4S7QZz6vpBhyqSWIhWcCEZlBDBHZB5XXHLtSxKHcI74RGUyJZJoHYchDVMammAoqP_tCLwir4O29weT6ayN8FBqmo_bkXiAMlzGAtZ0jfRody7PTB0YtQaDb1hFOzzgT4j398TNXwG1tYjDW-hmDWVxr-K922hL5TvIGQMKL5Y2WI9f4v7iHCCxPdpBN6oYIa5Kn-6gbz08K9J1udrDx0KrPSzyDB8D05hyLjwW89xUWGIwAODZV0_BJrivF8UlBrCNZ5MeHnxZLaviDFxoPAVAW4BMlNjUzeC66-nC3vmjKE2kEBgJHmeaIpd30cmV0Ose6uRFrh4gHKWeijMD55gfMBFzrmgoIsqyLKBKew5yG4oksm6XbqZ2LJKq0TNNDAWTloIOetWuv6gahfx15b4hcLvKNPi2J4rlPKm_ZhIxgPKS6pArHVAiYdMgTTQyDmggNXHQbsMeSa11yuSnjDjoWXsZ9IX5CSRyVaztmohFpubEQfcrbmrfxPfh_iSOHBRt8NnGq25eyc_PbE9y01eQeLGDqOXI_3yC5G1_RNujh__ey1N0DSQ9eX84OXqErlOTU2Qzp3ZRZ7Vcq8cAClfpk1r6MPp01QL_AxfhcJ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust%2C+Safe%2C+and+Scalable+Magnetic+Nanoparticle+Workflow+for+RNA+Extraction+of+Pathogens+from+Clinical+and+Wastewater+Samples&rft.jtitle=Global+challenges&rft.au=Gerardo+Ramos%E2%80%90Mandujano&rft.au=Salunke%2C+Rahul&rft.au=Mfarrej%2C+Sara&rft.au=Andri+Taruna+Rachmadi&rft.date=2021-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2056-6646&rft.eissn=2056-6646&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1002%2Fgch2.202000068&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6646&client=summon