Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae

Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic condi...

Full description

Saved in:
Bibliographic Details
Published inMicrobial biotechnology Vol. 14; no. 5; pp. 2101 - 2115
Main Authors Palermo, Gisele Cristina de Lima, Coutouné, Natalia, Bueno, João Gabriel Ribeiro, Maciel, Lucas Ferreira, Santos, Leandro Vieira
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.09.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. Designing high‐performance xylose‐fermenting yeasts is a key step to achieve scalable production in lignocellulose‐based biorefineries. This work explores metabolisms involved in metal homeostasis which positively affect xylose fermentation in engineered Saccharomyces cerevisiae strains. In summary, the manuscript indicated (i) the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption; (ii) provides a detailed molecular and physiological characterization of the best‐performing mutants connecting intracellular metal concentration levels with fermentation profiles; (iii) a temporal detailed expression profile indicating a metabolic remodeling in response to xylose, demonstrating changes in the main sugar sensing signaling pathways.
AbstractList Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. Designing high‐performance xylose‐fermenting yeasts is a key step to achieve scalable production in lignocellulose‐based biorefineries. This work explores metabolisms involved in metal homeostasis which positively affect xylose fermentation in engineered Saccharomyces cerevisiae strains. In summary, the manuscript indicated (i) the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption; (ii) provides a detailed molecular and physiological characterization of the best‐performing mutants connecting intracellular metal concentration levels with fermentation profiles; (iii) a temporal detailed expression profile indicating a metabolic remodeling in response to xylose, demonstrating changes in the main sugar sensing signaling pathways.
The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe 2+ /Mn 2+ transporter CCC1 , and the protein involved in heavy metal ion homeostasis BSD2 , as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ , a Fe‐S cluster scaffold protein, and ssk2Δ , a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe 2+ /Mn 2+ transporter CCC1 , and the protein involved in heavy metal ion homeostasis BSD2 , as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ , a Fe‐S cluster scaffold protein, and ssk2Δ , a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. Designing high‐performance xylose‐fermenting yeasts is a key step to achieve scalable production in lignocellulose‐based biorefineries. This work explores metabolisms involved in metal homeostasis which positively affect xylose fermentation in engineered Saccharomyces cerevisiae strains. In summary, the manuscript indicated (i) the vacuolar Fe 2+ /Mn 2+ transporter CCC1 , and the protein involved in metal ion homeostasis BSD2 , as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption; (ii) provides a detailed molecular and physiological characterization of the best‐performing mutants connecting intracellular metal concentration levels with fermentation profiles; (iii) a temporal detailed expression profile indicating a metabolic remodeling in response to xylose, demonstrating changes in the main sugar sensing signaling pathways.
The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe /Mn transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
Author Santos, Leandro Vieira
Maciel, Lucas Ferreira
Coutouné, Natalia
Bueno, João Gabriel Ribeiro
Palermo, Gisele Cristina de Lima
AuthorAffiliation 1 Brazilian Biorenewable National Laboratory (LNBR) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas São Paulo 13083‐100 Brazil
2 Genetics and Molecular Biology Graduate Program Institute of Biology University of Campinas (UNICAMP) Campinas São Paulo Brazil
AuthorAffiliation_xml – name: 2 Genetics and Molecular Biology Graduate Program Institute of Biology University of Campinas (UNICAMP) Campinas São Paulo Brazil
– name: 1 Brazilian Biorenewable National Laboratory (LNBR) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas São Paulo 13083‐100 Brazil
Author_xml – sequence: 1
  givenname: Gisele Cristina de Lima
  orcidid: 0000-0002-3853-1646
  surname: Palermo
  fullname: Palermo, Gisele Cristina de Lima
  organization: University of Campinas (UNICAMP)
– sequence: 2
  givenname: Natalia
  orcidid: 0000-0001-8174-5466
  surname: Coutouné
  fullname: Coutouné, Natalia
  organization: University of Campinas (UNICAMP)
– sequence: 3
  givenname: João Gabriel Ribeiro
  surname: Bueno
  fullname: Bueno, João Gabriel Ribeiro
  organization: University of Campinas (UNICAMP)
– sequence: 4
  givenname: Lucas Ferreira
  surname: Maciel
  fullname: Maciel, Lucas Ferreira
  organization: Brazilian Center for Research in Energy and Materials (CNPEM)
– sequence: 5
  givenname: Leandro Vieira
  orcidid: 0000-0003-2095-4429
  surname: Santos
  fullname: Santos, Leandro Vieira
  email: leandro.santos@lnbr.cnpem.br
  organization: University of Campinas (UNICAMP)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34313008$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9vFCEUwImpsX_07M1M4sXLtjAwwFxMtKnapKYH68kDAeaxZcMMK8yu3W_jZ_GTyezWTduLXCDv_fiFx3vH6GCIAyD0muBTUtYZEQ2ZiZY0p4RKKZ6ho33k4MH5EB3nvMCYY9zUL9AhZZRQjOUR-nFxtwwx-WFe9TDqUPk4bE8mBp_7XI2x8v0yxTVUd5sQM1QOUg_DqMcJ9UP1TVt7q1PsNxbyn98WEqx99hpeoudOhwyv7vcT9P3Txc35l9nV9efL8w9XM8sxETPTMQPUaQeCQisow9wQDo5KLKEmmHeC2c6Ba6nBsuSIJKLWxjICXDhJT9DlzttFvVDL5HudNipqr7aBmOZKp9HbAEoaCyCkA95SZqTVjcY14412Rta4g-J6v3MtV6aHzpZCkw6PpI8zg79V87hWkrGWN6QI3t0LUvy5gjyq3mcLIegB4iqrumkazkoddUHfPkEXcZWG8lWFElQKWbdTdWc7yqaYcwK3fwzBahoCNbVZTW1W2yEoN948rGHP_-t6AfgO-OUDbP7nU18_3tQ781-Q3cDx
CitedBy_id crossref_primary_10_1186_s40643_023_00647_2
crossref_primary_10_1016_j_indcrop_2023_117134
crossref_primary_10_3390_microorganisms11092197
crossref_primary_10_3390_plants12030681
crossref_primary_10_3389_fmicb_2022_960114
crossref_primary_10_7717_peerj_16340
crossref_primary_10_1016_j_funbio_2024_01_004
Cites_doi 10.1093/bioinformatics/bts611
10.1016/j.bbalip.2017.10.001
10.1038/srep46155
10.1007/s00253-008-1794-6
10.1093/femsyr/fox096
10.1534/genetics.112.140863
10.1038/nbt1297-1351
10.1128/MCB.20.21.7893-7902.2000
10.1093/bioinformatics/btu170
10.1074/jbc.M103944200
10.1074/jbc.272.18.11763
10.1074/jbc.M111.286666
10.1007/s11274-017-2215-8
10.1128/AEM.70.11.6816-6825.2004
10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K
10.1038/srep38676
10.1186/s13068-019-1643-0
10.1093/molbev/msx148
10.1074/jbc.273.37.23716
10.1007/s12649-017-0059-y
10.1074/jbc.RA119.008600
10.1038/nprot.2007.15
10.1006/jmbi.1999.3294
10.3389/fmicb.2015.01165
10.1016/j.ymben.2012.07.011
10.1016/j.cmet.2010.08.001
10.1371/journal.pone.0212389
10.1007/978-1-4939-9173-0_5
10.1016/j.jbiosc.2013.06.022
10.1038/s41467-017-01019-z
10.3390/ijms17030207
10.1186/s13059-014-0550-8
10.1016/j.btre.2016.01.003
10.1371/journal.pgen.1006372
10.1111/1574-6976.12065
10.1371/journal.pgen.1008037
10.1186/1471-2164-13-623
10.1002/(SICI)1097-0061(19970615)13:7<621::AID-YEA121>3.0.CO;2-U
10.1016/j.str.2010.03.011
10.1534/genetics.109.106419
10.1186/s12934-017-0694-9
10.1073/pnas.100113397
10.1074/jbc.M705570200
10.1002/yea.320101310
10.1093/bioinformatics/bts635
10.1016/j.mib.2014.09.015
10.1186/s13068-020-01782-0
10.1074/jbc.M306584200
10.1074/jbc.M307447200
10.1021/acs.biochem.7b00777
10.1073/pnas.2020154118
10.1186/gb-2005-6-9-r77
10.1083/jcb.145.4.757
10.1534/genetics.111.128033
10.1007/978-3-319-25304-6_6
10.1186/s12934-019-1141-x
ContentType Journal Article
Copyright 2021 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QO
7T7
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
RC3
7X8
5PM
DOA
DOI 10.1111/1751-7915.13887
DatabaseName Wiley Open Access
Wiley-Blackwell Backfiles (Open access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Genetics Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Metal ion homeostasis in C5 fermentation
EISSN 1751-7915
EndPage 2115
ExternalDocumentID oai_doaj_org_article_8bcee78fe6934b8ca5a02465afb820de
10_1111_1751_7915_13887
34313008
MBT213887
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: 2017/08519‐6; 2018/00888‐5; 2018/06254‐8; 2020/07918‐7
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 430291/2018‐3
– fundername: Instituto Serrapilheira
  funderid: Serra‐ 1708‐16205
– fundername: ;
– fundername: ;
  grantid: 2017/08519‐6; 2018/00888‐5; 2018/06254‐8; 2020/07918‐7
– fundername: ;
  grantid: Serra‐ 1708‐16205
– fundername: ;
  grantid: 430291/2018‐3
GroupedDBID ---
0R~
123
1OC
24P
29M
31~
4.4
53G
5DZ
5VS
7X7
8-1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAHHS
AAZKR
ABDBF
ABJCF
ABUWG
ACBWZ
ACCFJ
ACGFO
ACIWK
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ASPBG
AVUZU
AVWKF
AZFZN
BAWUL
BBNVY
BCNDV
BDRZF
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-9
DIK
EBD
EBS
EJD
EMOBN
ESTFP
ESX
F5P
FEDTE
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HYE
IAO
IHR
KQ8
L6V
LH4
LK8
LW6
M48
M7P
M7S
ML0
MM.
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
PTHSS
RNS
RPM
SV3
TEORI
TUS
UKHRP
WIN
CGR
CUY
CVF
ECM
EIF
ITC
NPM
AAYXX
CITATION
3V.
7QO
7T7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c6017-bd4be3fafe73e973406b16ef3808e2106d74cdfef93b086b118172abc41e67f83
IEDL.DBID RPM
ISSN 1751-7915
IngestDate Tue Oct 22 14:59:15 EDT 2024
Tue Sep 17 21:28:16 EDT 2024
Sat Oct 26 04:22:17 EDT 2024
Thu Oct 10 22:14:38 EDT 2024
Thu Sep 26 15:48:50 EDT 2024
Sat Nov 02 11:57:46 EDT 2024
Sat Aug 24 01:35:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6017-bd4be3fafe73e973406b16ef3808e2106d74cdfef93b086b118172abc41e67f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2095-4429
0000-0002-3853-1646
0000-0001-8174-5466
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449651/
PMID 34313008
PQID 2573878298
PQPubID 1016378
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_8bcee78fe6934b8ca5a02465afb820de
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449651
proquest_miscellaneous_2555640862
proquest_journals_2573878298
crossref_primary_10_1111_1751_7915_13887
pubmed_primary_34313008
wiley_primary_10_1111_1751_7915_13887_MBT213887
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bedford
– name: Hoboken
PublicationTitle Microbial biotechnology
PublicationTitleAlternate Microb Biotechnol
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 12
2013; 29
2017; 7
2017; 8
2010; 18
1997; 272
2009; 82
2019; 10
2019; 15
2019; 14
2019; 18
2020; 13
2012; 14
2012; 13
2003; 278
2014; 22
2019; 1962
1998; 273
2018; 1863
2004; 70
1997; 15
2017; 33
1997; 13
1999; 15
2021; 118
2017; 34
2000; 97
2014; 15
1999; 294
2012; 28
2007; 2
2011; 286
2014; 117
2015; 6
2000; 20
1999; 145
2016; 17
2008; 283
2016; 12
2001; 276
2016; 6
2018; 18
2017; 16
2012; 190
2012; 192
2017; 56
2014; 38
2005; 6
2016
2009; 183
2014; 30
2019; 294
2016; 9
1994; 10
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 286
  start-page: 38488
  year: 2011
  end-page: 38497
  article-title: Yap5 protein‐regulated transcription of the TYW1 gene protects yeast from high iron toxicity
  publication-title: J Biol Chem
– volume: 117
  start-page: 135
  year: 2014
  end-page: 141
  article-title: Suppression mechanism of the calcium sensitivity in ptp2Δmsg5Δ double disruptant involves a novel HOG‐independent function of Ssk2, transcription factor Msn2 and the protein kinase A component Bcy1
  publication-title: J Biosci Bioeng
– volume: 9
  start-page: 53
  year: 2016
  end-page: 56
  article-title: Comparison of xylose fermentation by two high‐performance engineered strains of
  publication-title: Biotechnol Reports
– volume: 14
  start-page: 611
  year: 2012
  end-page: 622
  article-title: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by
  publication-title: Metab Eng
– volume: 6
  year: 2005
  article-title: Characterization of the yeast ionome: a genome‐wide analysis of nutrient mineral and trace element homeostasis in
  publication-title: Genome Biol
– volume: 6
  start-page: 1165
  year: 2015
  article-title: Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in
  publication-title: Front Microbiol
– volume: 2
  start-page: 38
  year: 2007
  end-page: 41
  article-title: Large‐scale high‐efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat Protoc
– volume: 82
  start-page: 1067
  year: 2009
  end-page: 1078
  article-title: Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in for bioconversion of xylose to ethanol
  publication-title: Appl Microbiol Biotechnol
– volume: 18
  start-page: 88
  year: 2019
  article-title: Exploring the xylose paradox in through in vivo sugar signalomics of targeted deletants
  publication-title: Microb Cell Fact
– volume: 278
  start-page: 45391
  year: 2003
  end-page: 45396
  article-title: The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in
  publication-title: J Biol Chem
– volume: 192
  start-page: 289
  year: 2012
  end-page: 318
  article-title: Response to hyperosmotic stress
  publication-title: Genetics
– volume: 1962
  start-page: 65
  year: 2019
  end-page: 95
  article-title: Whole‐genome annotation with BRAKER
  publication-title: Methods Mol Biol
– volume: 8
  start-page: 922
  year: 2017
  article-title: Fructose‐1,6‐bisphosphate couples glycolytic flux to activation of Ras
  publication-title: Nat Commun
– volume: 28
  start-page: 3211
  year: 2012
  end-page: 3217
  article-title: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data
  publication-title: Bioinformatics
– volume: 118
  year: 2021
  article-title: Yeast optimizes metal utilization based on metabolic network and enzyme kinetics
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 82
  year: 2017
  article-title: Production of fuels and chemicals from xylose by engineered : a review and perspective
  publication-title: Microb Cell Fact
– volume: 15
  start-page: 1351
  year: 1997
  end-page: 1357
  article-title: Stress tolerance: the key to effective strains of industrial baker’s yeast
  publication-title: Nat Biotechnol
– volume: 33
  start-page: 75
  year: 2017
  article-title: Mechanisms of iron sensing and regulation in the yeast
  publication-title: World J Microbiol Biotechnol
– volume: 6
  start-page: 38676
  year: 2016
  article-title: Unraveling the genetic basis of xylose consumption in engineered strains
  publication-title: Sci Rep
– volume: 294
  start-page: 897
  year: 1999
  end-page: 907
  article-title: ISU1 and ISU2: Members of a well‐conserved gene family for iron‐sulfur cluster assembly
  publication-title: J Mol Biol
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  article-title: STAR: Ultrafast universal RNA‐seq aligner
  publication-title: Bioinformatics
– volume: 10
  start-page: 1793
  year: 1994
  end-page: 1808
  article-title: New heterologous modules for classical or PCR‐based gene disruptions in
  publication-title: Yeast
– volume: 13
  start-page: 621
  year: 1997
  end-page: 637
  article-title: The AFT1 transcriptional factor is differentially required for expression of high‐affinity iron uptake genes in
  publication-title: Yeast
– volume: 13
  start-page: 145
  year: 2020
  article-title: Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinant strains at high xylose concentrations
  publication-title: Biotechnol Biofuels
– volume: 190
  start-page: 1157
  year: 2012
  end-page: 1195
  article-title: The response to heat shock and oxidative stress in
  publication-title: Genetics
– volume: 272
  start-page: 11763
  year: 1997
  end-page: 11769
  article-title: Negative control of heavy metal uptake by the BSD2 gene
  publication-title: J Biol Chem
– volume: 12
  year: 2016
  article-title: Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by
  publication-title: PLOS Genet
– volume: 12
  start-page: 373
  year: 2010
  end-page: 385
  article-title: Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron‐sulfur cluster
  publication-title: Cell Metab
– volume: 283
  start-page: 8318
  year: 2008
  end-page: 8330
  article-title: Cellular and mitochondrial remodeling upon defects in iron‐sulfur protein biogenesis
  publication-title: J Biol Chem
– volume: 56
  start-page: 5991
  year: 2017
  end-page: 6005
  article-title: Metal dependence of the xylose isomerase from sp. E2 explored by activity profiling and protein crystallography
  publication-title: Biochemistry
– volume: 22
  start-page: 111
  year: 2014
  end-page: 119
  article-title: The role of mitochondria in cytosolic‐nuclear iron–sulfur protein biogenesis and in cellular iron regulation
  publication-title: Curr Opin Microbiol
– volume: 10
  start-page: 235
  year: 2019
  end-page: 251
  article-title: Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview
  publication-title: Waste and Biomass Valorization
– volume: 38
  start-page: 254
  year: 2014
  end-page: 299
  article-title: Nutrient sensing and signaling in the yeast
  publication-title: FEMS Microbiol Rev
– volume: 14
  year: 2019
  article-title: PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production
  publication-title: PLoS One
– volume: 278
  start-page: 36582
  year: 2003
  end-page: 36587
  article-title: Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in
  publication-title: J Biol Chem
– volume: 18
  start-page: 688
  year: 2010
  end-page: 699
  article-title: Metal Ion roles and the movement of hydrogen during reaction catalyzed by D‐xylose isomerase: a joint X‐ray and neutron diffraction study
  publication-title: Structure
– volume: 183
  start-page: 873
  year: 2009
  end-page: 884
  article-title: MNR2 regulates intracellular magnesium storage in
  publication-title: Genetics
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 20
  start-page: 7893
  year: 2000
  end-page: 7902
  article-title: expresses three functionally distinct homologues of the nramp family of metal transporters
  publication-title: Mol Cell Biol
– start-page: 125
  year: 2016
  end-page: 168
– volume: 294
  start-page: 9489
  year: 2019
  end-page: 9502
  article-title: Mitochondria export iron‐sulfur and sulfur intermediates to the cytoplasm for iron‐sulfur cluster assembly and tRNA thiolation in yeast
  publication-title: J Biol Chem
– volume: 18
  start-page: fox096
  year: 2018
  article-title: Assessing the effect of d‐xylose on the sugar signaling pathways of in strains engineered for xylose transport and assimilation
  publication-title: FEMS Yeast Research
– volume: 7
  start-page: 46155
  year: 2017
  article-title: Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered by influencing manganese homeostasis
  publication-title: Sci Rep
– volume: 273
  start-page: 23716
  year: 1998
  end-page: 23721
  article-title: Metalloregulation of FRE1 and FRE2 homologs in
  publication-title: J Biol Chem
– volume: 97
  start-page: 5984
  year: 2000
  end-page: 5988
  article-title: The yeast A kinases differentially regulate iron uptake and respiratory function
  publication-title: Proc Natl Acad Sci USA
– volume: 276
  start-page: 29515
  year: 2001
  end-page: 29519
  article-title: CCC1 is a transporter that mediates vacuolar iron storage in yeast
  publication-title: J Biol Chem
– volume: 15
  start-page: 1541
  year: 1999
  end-page: 1553
  article-title: Three new dominant drug resistance cassettes for gene disruption in
  publication-title: Yeast
– volume: 17
  start-page: 207
  year: 2016
  article-title: Xylose fermentation by : challenges and prospects
  publication-title: Int J Mol Sci
– volume: 13
  start-page: 623
  year: 2012
  article-title: High‐resolution genome‐wide scan of genes, gene‐networks and cellular systems impacting the yeast ionome
  publication-title: BMC Genom
– volume: 15
  start-page: 550
  year: 2014
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biol
– volume: 15
  year: 2019
  article-title: Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast
  publication-title: PLOS Genet
– volume: 13
  start-page: 5
  year: 2020
  article-title: Structure‐based directed evolution improves growth on xylose by influencing in vivo enzyme performance
  publication-title: Biotechnol Biofuels
– volume: 34
  start-page: 2115
  year: 2017
  end-page: 2122
  article-title: Fast genome‐wide functional annotation through orthology assignment by eggNOG‐Mapper
  publication-title: Mol Biol Evol
– volume: 1863
  start-page: 61
  year: 2018
  end-page: 70
  article-title: The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation
  publication-title: Biochim Biophys Acta ‐ Mol Cell Biol Lipids
– volume: 70
  start-page: 6816
  year: 2004
  end-page: 6825
  article-title: engineered for xylose metabolism exhibits a respiratory response
  publication-title: Appl Environ Microbiol
– volume: 145
  start-page: 757
  year: 1999
  end-page: 767
  article-title: Oxygen stress: A regulator of apoptosis in yeast
  publication-title: J Cell Biol
– ident: e_1_2_10_20_1
  doi: 10.1093/bioinformatics/bts611
– ident: e_1_2_10_36_1
  doi: 10.1016/j.bbalip.2017.10.001
– ident: e_1_2_10_53_1
  doi: 10.1038/srep46155
– ident: e_1_2_10_33_1
  doi: 10.1007/s00253-008-1794-6
– ident: e_1_2_10_42_1
  doi: 10.1093/femsyr/fox096
– ident: e_1_2_10_50_1
  doi: 10.1534/genetics.112.140863
– ident: e_1_2_10_2_1
  doi: 10.1038/nbt1297-1351
– ident: e_1_2_10_46_1
  doi: 10.1128/MCB.20.21.7893-7902.2000
– ident: e_1_2_10_4_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_10_26_1
  doi: 10.1074/jbc.M103944200
– ident: e_1_2_10_30_1
  doi: 10.1074/jbc.272.18.11763
– ident: e_1_2_10_27_1
  doi: 10.1074/jbc.M111.286666
– ident: e_1_2_10_34_1
  doi: 10.1007/s11274-017-2215-8
– ident: e_1_2_10_19_1
  doi: 10.1128/AEM.70.11.6816-6825.2004
– ident: e_1_2_10_14_1
  doi: 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K
– ident: e_1_2_10_10_1
  doi: 10.1038/srep38676
– ident: e_1_2_10_25_1
  doi: 10.1186/s13068-019-1643-0
– ident: e_1_2_10_18_1
  doi: 10.1093/molbev/msx148
– ident: e_1_2_10_35_1
  doi: 10.1074/jbc.273.37.23716
– ident: e_1_2_10_52_1
  doi: 10.1007/s12649-017-0059-y
– ident: e_1_2_10_43_1
  doi: 10.1074/jbc.RA119.008600
– ident: e_1_2_10_13_1
  doi: 10.1038/nprot.2007.15
– ident: e_1_2_10_12_1
  doi: 10.1006/jmbi.1999.3294
– ident: e_1_2_10_48_1
  doi: 10.3389/fmicb.2015.01165
– ident: e_1_2_10_57_1
  doi: 10.1016/j.ymben.2012.07.011
– ident: e_1_2_10_39_1
  doi: 10.1016/j.cmet.2010.08.001
– ident: e_1_2_10_55_1
  doi: 10.1371/journal.pone.0212389
– ident: e_1_2_10_17_1
  doi: 10.1007/978-1-4939-9173-0_5
– ident: e_1_2_10_23_1
  doi: 10.1016/j.jbiosc.2013.06.022
– ident: e_1_2_10_44_1
  doi: 10.1038/s41467-017-01019-z
– ident: e_1_2_10_38_1
  doi: 10.3390/ijms17030207
– ident: e_1_2_10_31_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_10_28_1
  doi: 10.1016/j.btre.2016.01.003
– ident: e_1_2_10_51_1
  doi: 10.1371/journal.pgen.1006372
– ident: e_1_2_10_8_1
  doi: 10.1111/1574-6976.12065
– ident: e_1_2_10_40_1
  doi: 10.1371/journal.pgen.1008037
– ident: e_1_2_10_56_1
  doi: 10.1186/1471-2164-13-623
– ident: e_1_2_10_6_1
  doi: 10.1002/(SICI)1097-0061(19970615)13:7<621::AID-YEA121>3.0.CO;2-U
– ident: e_1_2_10_21_1
  doi: 10.1016/j.str.2010.03.011
– ident: e_1_2_10_45_1
  doi: 10.1534/genetics.109.106419
– ident: e_1_2_10_22_1
  doi: 10.1186/s12934-017-0694-9
– ident: e_1_2_10_49_1
  doi: 10.1073/pnas.100113397
– ident: e_1_2_10_16_1
  doi: 10.1074/jbc.M705570200
– ident: e_1_2_10_54_1
  doi: 10.1002/yea.320101310
– ident: e_1_2_10_9_1
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_2_10_29_1
  doi: 10.1016/j.mib.2014.09.015
– ident: e_1_2_10_5_1
  doi: 10.1186/s13068-020-01782-0
– ident: e_1_2_10_47_1
  doi: 10.1074/jbc.M306584200
– ident: e_1_2_10_15_1
  doi: 10.1074/jbc.M307447200
– ident: e_1_2_10_24_1
  doi: 10.1021/acs.biochem.7b00777
– ident: e_1_2_10_7_1
  doi: 10.1073/pnas.2020154118
– ident: e_1_2_10_11_1
  doi: 10.1186/gb-2005-6-9-r77
– ident: e_1_2_10_32_1
  doi: 10.1083/jcb.145.4.757
– ident: e_1_2_10_37_1
  doi: 10.1534/genetics.111.128033
– ident: e_1_2_10_3_1
  doi: 10.1007/978-3-319-25304-6_6
– ident: e_1_2_10_41_1
  doi: 10.1186/s12934-019-1141-x
SSID ssj0060052
Score 2.2637038
Snippet Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in...
The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based...
The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based...
Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2101
SubjectTerms Anaerobic conditions
Biomass
Biorefineries
Cation Transport Proteins
Cellulose
Enzymes
Ethanol
Fermentation
Gene expression
Genomes
Heavy metals
Homeostasis
Iron
Kinases
Lignocellulose
Metabolic Engineering
Metabolism
Metal concentrations
Metal ions
Mutation
Productivity
Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Signal transduction
Sugar
Transcriptomes
Xylose
Yeast
Yeasts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9VAFL1IV7oQ62e0lRFcuIl9yWQ-smxLSxF0YwsFF8NMcgcDvkTMK-i_6W_xl3nvJO_xHgrduAvJEIZzM_eem5w5AXirJKIyRZsXOlKDoo3MvfJNzsFGg7YuQlL5ftIXV9WHa3W99asv1oRN9sATcEc2UBo3NqKuZRVsQ3eisqKVj4GKV4sp-y7qdTM15WDNbztnIx_W7VCNLNiYUb0vZFLPbdWgZNX_L375t0xym76m-nP-CB7OxFEcTxPeh3vYP4YHW3aCT-DLRlAnlkikWhDm6SgM37pxOYrVILr0EgHFT2rURxSREvO8-6gXXS8--4b3YQ3LX5Q_ft82SQU8dh6fwtX52eXpRT7_PCFvNFee0FYBZfQRjcTaSCrcodAYpV1YJMR0a6qmjRhrGaitCbwB1ZQ-NFWB2kQrn8FeP_T4AkRQLREH9LpGrErfhBpliOhLr9DEhc_g3RpO933yyHDr3oKRd4y8S8hncMJwb4axuXU6QSF3c8jdXSHP4GAdLDevuNFR6pGW6E5tM3izuUxrhT-A-B6HGx6jlK64icvg-RTbzUwkMSlJhCgDsxP1nanuXum7r8mP21Zsul9kcJSej7swcB9PLst09PJ_oPEK7pess0m6twPYW_24wUMiSqvwOq2JP-PWEtI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BucAB8SZQkJE4cAlt4viRE6KIpUKCC61UcbHsZAyR2KQ0Wwn-PTPeZNkVCG5W7IMzM575xv48BniuJKIyRZsXOlKCoo3MvfJNzspGg7YuQmL5ftTHp9X7M3U2bbiNE61y9onJUbdDw3vkB2Ra0lI4q-2r8-85vxrFp6vTExpX4VpRGsPJl128mz2x5j3PqZwPs3coUhZcnlG9LGTi0G1FolSw_28o80-y5DaITVFocQtuTvBRvF7r-zZcwf4O3NgqKngXPm9odWKJBK0FST61wvCtG5ejWA2iS1sJKH5Quj6iiOSepztIveh68ck3fBtrWP4kLyKaRAUeO4_34HTx9uTNcT69oJA3msNPaKuAMvqIRmJtJEXvUGiM0h5apGRPt6Zq2oixloFym8C3UE3pQ1MVqE208j7s9UOPD0EE1RJ6QK9rxKr0TahRhoi-9ApNPPQZvJil6c7XhTLcnGCw4B0L3iXBZ3DE0t4M4wrX6cNw8cVNC8bZQOHb2Ii6llWwDVkQwQmtfAwEWlrMYH_WlZuW3eh-G0kGzzbdtGD4FMT3OFzyGKV0xZlcBg_Wqt3MRBKckoSKMjA7St-Z6m5P331NRbltxZX3iwwOknn8Twbuw9FJmVqP_v0jj-F6yTSaRGvbh73VxSU-IRy0Ck-Tsf8C_BAH7g
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BucAB8SalVEbiwCWliZ85IESrVhUSXOhKFZfITsY0UjeBzVZq_33H3iR0xYrerNiR7Jmx5xv78xjgveSIUmd1milPAYrSPLXSVmlQNmo0ReYiy_e7OpmJr2fy7O9zQIMA-42hXXhPara42Lv6c_2ZJvynkZVDHjALaRflXsZpztyHB7mgMD3w-MR0pKDCBuiQ22fDT2tuKWbv3wQ5_2VO3ka00SUdP4HHA5ZkX1bKfwr3sH0Gj25lGHwOPyeOHZsjDZGRGmLJdRdNP-_ZsmNN3FdAdkWxe4_M01o9XEhqWdOyH7YKV7O6-TUtKayKvOC-sfgCZsdHp4cn6fCcQlqp4ItcLRxybz1qjoXm5MpdptBzs2-QIj9Va1HVHn3BHQU6LlxJ1bl1lchQaW_4S9hquxZfA3OyJiiBVhWIIreVK5A7jza3ErXftwl8GKVZ_l5lzSjHaCMIvgyCL6PgEzgI0p6ahXTX8UO3-FUOs6c0jny5Nh5VwYUzFZkTYQslrXeEYGpMYGfUVTmaUEmLETcEgAqTwLupmmZPOBKxLXaXoY2USoSwLoFXK9VOPeGErThBpAT0mtLXurpe0zbnMUO3ESENf5bAx2ged8mg_HZwmsfS9v8H8gYe5oFTEzluO7C1XFziWwJFS7cbjf0G7koKNw
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ditUwEB50vdEL8d_qKhG88Ka6bZqfXrrisgiK4C4IXoSknWhhTyvbs6Bv47P4ZM7ktOUcFcS70qQlzGRmvklnvgI8VRJRmaLNCx0pQdFG5l75Jmdlo0FbFyFV-b7Tx6fVm49qribkXpgNP8Ry4MaWkfw1G7gP45aRU9wrmGxRPS8kWcpluMK8MUyfX1bvZ2es-dgz9UROkyd2Hy7m-e0FO4Ep8ff_DXT-WTu5jWlTUDq6AdcnNClebtR_Ey5hfwuubXEM3oZPS5WdWCEhbUGKSFdhOOvG1SjWg-jSyQKKb5S9jygieeupJakXXS8--Iabs4bVd3IqP380qTR47DzegdOj1yevjvPpjwp5ozkchbYKKKOPaCTWRlI0D4XGKO2BRUr-dGuqpo0Yaxko1wnclWpKH5qqQG2ilXdhrx96vA8iqJbQBHpdI1alb0KNMkT0pVdo4oHP4NksTvd1Q5zh5oSDJe9Y8i5JPoNDFvcyjRmv043h_LObDMjZQOHc2Ii6llWwDe0oghda-RgIxLSYwf6sLDeZ4ejIH0lLGKi2GTxZhsmA-KuI73G44DlK6YozuwzubXS7rEQSvJKEkjIwO1rfWeruSN99SSTdtmIm_iKDF2l__EsG7u3hSZmuHvz3Ew_hasmVNqnybR_21ucX-Iig0jo8TsbwC0fvDLA
  priority: 102
  providerName: Wiley-Blackwell
Title Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.13887
https://www.ncbi.nlm.nih.gov/pubmed/34313008
https://www.proquest.com/docview/2573878298
https://www.proquest.com/docview/2555640862
https://pubmed.ncbi.nlm.nih.gov/PMC8449651
https://doaj.org/article/8bcee78fe6934b8ca5a02465afb820de
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-aDkb3MPZ_3rrgwR724iS2rD9-XEqzMkgJWwuBPRjJPnWGxi51Ctu32WfZJ9tJsUPCBoO9CGEZLO5Out_JvzsBvOMMkcu4jGJhKUARkkWa6yJyykaJKouNZ_mei7PL9NOSLw-A97kwnrRfmGpUX69GdfXNcytvVsW454mNF_MTlboq5_F4AAMy0D5E32y_wh10djV8HGWH3GPsajLyUcxoQR3BfUY-k03cfZI7nsgX7P8byvyTLLkLYr0Xmj2Chx18DD9spvkYDrB-Ag92igo-ha9bWl24QoLWIUne90xzXbWrNlw3YeWPEjD8TuF6i6Gl7bnLQarDqg6_6MJlYzWrH7SL_PpZeC5wW2l8Bpez04uTs6i7QiEqhPM_pkwNMqstSoaZZOS-TSzQMjVRSNGeKGValBZtxgwFN8alocpEmyKNUUir2HM4rJsaX0JoeEnwAbXIENNEFyZDZizqRHOUdqIDeN-LM7_ZVMrI-wjDKSF3Ssi9EgKYOnFvX3Mlrv2D5vYq7xSdK0P-WyqLImOpUQWZEOEJwbU1hFpKDOC4V1berbs2pw2IKQI9mQrg7XaYVoz7DaJrbO7cO5yL1IVyAbzY6HY7k942ApB7Wt-b6v4IGamvyt0ZZQBjbx__kkE-n14kvvfqv7_1Go4SR7HxlLdjOFzf3uEbwkhrM4RBki6olUtJrZp9HMK96en54vPQnzpQO0_V0K-c34MQGAw
link.rule.ids 230,315,730,783,787,867,888,2109,2228,11574,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,46064,46488,50826,50935,53804,53806,74073,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BOQAHxJtAASNx4BLaxPEjJ0QRywJtL2yliktkJ2OIxCal2Urw75nxZpddgeBmxT44M-OZb-zPY4DnSiIqkzVppgMlKNrI1ClXp6xsNGjLzEeW77GenhQfTtXpuOE2jLTKlU-Mjrrpa94j3yPTkpbCWWlfnX1P-dUoPl0dn9C4DFcKSbGab4pP3q08seY9z7GcD7N3KFJmXJ5Rvcxk5NBtRKJYsP9vKPNPsuQmiI1RaHITbozwUbxe6vsWXMLuNlzfKCp4Bz6vaXVijgStBUk-tnz_rR3mg1j0oo1bCSh-ULo-oAjknsc7SJ1oO_HJ1Xwbq5__JC8i6kgFHlqHd-Fk8nb2ZpqOLyiktebw45vCowwuoJFYGknR22cag7T7FinZ040p6iZgKKWn3MbzLVSTO18XGWoTrLwHO13f4QMQXjWEHtDpErHIXe1LlD6gy51CE_ZdAi9W0qzOloUyqlWCwYKvWPBVFHwCByzt9TCucB0_9OdfqnHBVNZT-DY2oC5l4W1NFkRwQisXPIGWBhPYXemqGpfdUP02kgSerbtpwfApiOuwv-AxSumCM7kE7i9Vu56JJDglCRUlYLaUvjXV7Z6u_RqLctuCK-9nCexF8_ifDKqjg1keWw___SNP4ep0dnRYHb4__vgIruVMqYkUt13YWZxf4GPCRAv_JBr-L2VACtA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagSAgOiGcJFDASBy5hmzh-5IQosCqvColWWnGx7GQMkdikNFsJ_j0zXu-yKxDcrNgHZ2Y88439eczYEykApC7avFABExSlRe6ka3JSNmgwdeEjy_dIHZ5Ub2dylvhPY6JVrnxidNTt0NAe-QRNSxgMZ7WZhESL-Phq-vz0e04vSNFJa3pO4yK7pDFLIZvXs3XypWj_M5X2ISYPRs2CSjXKZ4WIfLqNqBSL9_8Ncf5JnNwEtDEiTa-zawlK8hdL3d9gF6C_ya5uFBi8xT6vKXZ8DgizOWohtvzwrRvnI18MvIvbCsB_YOo-Ag_oqtN9pJ53Pf_kGrqZNcx_okfhTaQFj52D2-xk-vr45WGeXlPIG0WhyLeVBxFcAC2g1gIjuS8UBGH2DWDip1pdNW2AUAuPeY6nG6m6dL6pClA6GHGH7fRDD3cZ97JFJAFO1QBV6Rpfg_ABXOkk6LDvMvZ0JU17uiyaYVfJBgnekuBtFHzGDkja62FU7Tp-GM6-2LR4rPEYyrUJoGpRedOgNSG0UNIFjwCmhYztrXRl0xIc7W-DydjjdTcuHjoRcT0M5zRGSlVRVpex3aVq1zMRCK0EIqSM6S2lb011u6fvvsYC3aaiKvxFxibRPP4nA_vh4LiMrXv__pFH7DLavH3_5ujdfXalJHZNZLvtsZ3F2Tk8QHi08A-j3f8C5jEPCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+metal+ion+metabolisms+to+improve+xylose+fermentation+in+Saccharomyces+cerevisiae&rft.jtitle=Microbial+biotechnology&rft.au=Gisele+Cristina+de+Lima+Palermo&rft.au=Coutoun%C3%A9%2C+Natalia&rft.au=Ribeiro+Bueno%2C+Jo%C3%A3o+Gabriel&rft.au=Lucas+Ferreira+Maciel&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1751-7915&rft.volume=14&rft.issue=5&rft.spage=2101&rft.epage=2115&rft_id=info:doi/10.1111%2F1751-7915.13887&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon