Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic condi...
Saved in:
Published in | Microbial biotechnology Vol. 14; no. 5; pp. 2101 - 2115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.09.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
Designing high‐performance xylose‐fermenting yeasts is a key step to achieve scalable production in lignocellulose‐based biorefineries. This work explores metabolisms involved in metal homeostasis which positively affect xylose fermentation in engineered Saccharomyces cerevisiae strains. In summary, the manuscript indicated (i) the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption; (ii) provides a detailed molecular and physiological characterization of the best‐performing mutants connecting intracellular metal concentration levels with fermentation profiles; (iii) a temporal detailed expression profile indicating a metabolic remodeling in response to xylose, demonstrating changes in the main sugar sensing signaling pathways. |
---|---|
AbstractList | Summary
The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
Designing high‐performance xylose‐fermenting yeasts is a key step to achieve scalable production in lignocellulose‐based biorefineries. This work explores metabolisms involved in metal homeostasis which positively affect xylose fermentation in engineered Saccharomyces cerevisiae strains. In summary, the manuscript indicated (i) the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption; (ii) provides a detailed molecular and physiological characterization of the best‐performing mutants connecting intracellular metal concentration levels with fermentation profiles; (iii) a temporal detailed expression profile indicating a metabolic remodeling in response to xylose, demonstrating changes in the main sugar sensing signaling pathways. The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe 2+ /Mn 2+ transporter CCC1 , and the protein involved in heavy metal ion homeostasis BSD2 , as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ , a Fe‐S cluster scaffold protein, and ssk2Δ , a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe 2+ /Mn 2+ transporter CCC1 , and the protein involved in heavy metal ion homeostasis BSD2 , as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ , a Fe‐S cluster scaffold protein, and ssk2Δ , a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. Designing high‐performance xylose‐fermenting yeasts is a key step to achieve scalable production in lignocellulose‐based biorefineries. This work explores metabolisms involved in metal homeostasis which positively affect xylose fermentation in engineered Saccharomyces cerevisiae strains. In summary, the manuscript indicated (i) the vacuolar Fe 2+ /Mn 2+ transporter CCC1 , and the protein involved in metal ion homeostasis BSD2 , as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption; (ii) provides a detailed molecular and physiological characterization of the best‐performing mutants connecting intracellular metal concentration levels with fermentation profiles; (iii) a temporal detailed expression profile indicating a metabolic remodeling in response to xylose, demonstrating changes in the main sugar sensing signaling pathways. The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe /Mn transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. |
Author | Santos, Leandro Vieira Maciel, Lucas Ferreira Coutouné, Natalia Bueno, João Gabriel Ribeiro Palermo, Gisele Cristina de Lima |
AuthorAffiliation | 1 Brazilian Biorenewable National Laboratory (LNBR) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas São Paulo 13083‐100 Brazil 2 Genetics and Molecular Biology Graduate Program Institute of Biology University of Campinas (UNICAMP) Campinas São Paulo Brazil |
AuthorAffiliation_xml | – name: 2 Genetics and Molecular Biology Graduate Program Institute of Biology University of Campinas (UNICAMP) Campinas São Paulo Brazil – name: 1 Brazilian Biorenewable National Laboratory (LNBR) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas São Paulo 13083‐100 Brazil |
Author_xml | – sequence: 1 givenname: Gisele Cristina de Lima orcidid: 0000-0002-3853-1646 surname: Palermo fullname: Palermo, Gisele Cristina de Lima organization: University of Campinas (UNICAMP) – sequence: 2 givenname: Natalia orcidid: 0000-0001-8174-5466 surname: Coutouné fullname: Coutouné, Natalia organization: University of Campinas (UNICAMP) – sequence: 3 givenname: João Gabriel Ribeiro surname: Bueno fullname: Bueno, João Gabriel Ribeiro organization: University of Campinas (UNICAMP) – sequence: 4 givenname: Lucas Ferreira surname: Maciel fullname: Maciel, Lucas Ferreira organization: Brazilian Center for Research in Energy and Materials (CNPEM) – sequence: 5 givenname: Leandro Vieira orcidid: 0000-0003-2095-4429 surname: Santos fullname: Santos, Leandro Vieira email: leandro.santos@lnbr.cnpem.br organization: University of Campinas (UNICAMP) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34313008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9vFCEUwImpsX_07M1M4sXLtjAwwFxMtKnapKYH68kDAeaxZcMMK8yu3W_jZ_GTyezWTduLXCDv_fiFx3vH6GCIAyD0muBTUtYZEQ2ZiZY0p4RKKZ6ho33k4MH5EB3nvMCYY9zUL9AhZZRQjOUR-nFxtwwx-WFe9TDqUPk4bE8mBp_7XI2x8v0yxTVUd5sQM1QOUg_DqMcJ9UP1TVt7q1PsNxbyn98WEqx99hpeoudOhwyv7vcT9P3Txc35l9nV9efL8w9XM8sxETPTMQPUaQeCQisow9wQDo5KLKEmmHeC2c6Ba6nBsuSIJKLWxjICXDhJT9DlzttFvVDL5HudNipqr7aBmOZKp9HbAEoaCyCkA95SZqTVjcY14412Rta4g-J6v3MtV6aHzpZCkw6PpI8zg79V87hWkrGWN6QI3t0LUvy5gjyq3mcLIegB4iqrumkazkoddUHfPkEXcZWG8lWFElQKWbdTdWc7yqaYcwK3fwzBahoCNbVZTW1W2yEoN948rGHP_-t6AfgO-OUDbP7nU18_3tQ781-Q3cDx |
CitedBy_id | crossref_primary_10_1186_s40643_023_00647_2 crossref_primary_10_1016_j_indcrop_2023_117134 crossref_primary_10_3390_microorganisms11092197 crossref_primary_10_3390_plants12030681 crossref_primary_10_3389_fmicb_2022_960114 crossref_primary_10_7717_peerj_16340 crossref_primary_10_1016_j_funbio_2024_01_004 |
Cites_doi | 10.1093/bioinformatics/bts611 10.1016/j.bbalip.2017.10.001 10.1038/srep46155 10.1007/s00253-008-1794-6 10.1093/femsyr/fox096 10.1534/genetics.112.140863 10.1038/nbt1297-1351 10.1128/MCB.20.21.7893-7902.2000 10.1093/bioinformatics/btu170 10.1074/jbc.M103944200 10.1074/jbc.272.18.11763 10.1074/jbc.M111.286666 10.1007/s11274-017-2215-8 10.1128/AEM.70.11.6816-6825.2004 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K 10.1038/srep38676 10.1186/s13068-019-1643-0 10.1093/molbev/msx148 10.1074/jbc.273.37.23716 10.1007/s12649-017-0059-y 10.1074/jbc.RA119.008600 10.1038/nprot.2007.15 10.1006/jmbi.1999.3294 10.3389/fmicb.2015.01165 10.1016/j.ymben.2012.07.011 10.1016/j.cmet.2010.08.001 10.1371/journal.pone.0212389 10.1007/978-1-4939-9173-0_5 10.1016/j.jbiosc.2013.06.022 10.1038/s41467-017-01019-z 10.3390/ijms17030207 10.1186/s13059-014-0550-8 10.1016/j.btre.2016.01.003 10.1371/journal.pgen.1006372 10.1111/1574-6976.12065 10.1371/journal.pgen.1008037 10.1186/1471-2164-13-623 10.1002/(SICI)1097-0061(19970615)13:7<621::AID-YEA121>3.0.CO;2-U 10.1016/j.str.2010.03.011 10.1534/genetics.109.106419 10.1186/s12934-017-0694-9 10.1073/pnas.100113397 10.1074/jbc.M705570200 10.1002/yea.320101310 10.1093/bioinformatics/bts635 10.1016/j.mib.2014.09.015 10.1186/s13068-020-01782-0 10.1074/jbc.M306584200 10.1074/jbc.M307447200 10.1021/acs.biochem.7b00777 10.1073/pnas.2020154118 10.1186/gb-2005-6-9-r77 10.1083/jcb.145.4.757 10.1534/genetics.111.128033 10.1007/978-3-319-25304-6_6 10.1186/s12934-019-1141-x |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QO 7T7 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S P64 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS RC3 7X8 5PM DOA |
DOI | 10.1111/1751-7915.13887 |
DatabaseName | Wiley Open Access Wiley-Blackwell Backfiles (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Health Medical collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Genetics Abstracts ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Metal ion homeostasis in C5 fermentation |
EISSN | 1751-7915 |
EndPage | 2115 |
ExternalDocumentID | oai_doaj_org_article_8bcee78fe6934b8ca5a02465afb820de 10_1111_1751_7915_13887 34313008 MBT213887 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2017/08519‐6; 2018/00888‐5; 2018/06254‐8; 2020/07918‐7 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 430291/2018‐3 – fundername: Instituto Serrapilheira funderid: Serra‐ 1708‐16205 – fundername: ; – fundername: ; grantid: 2017/08519‐6; 2018/00888‐5; 2018/06254‐8; 2020/07918‐7 – fundername: ; grantid: Serra‐ 1708‐16205 – fundername: ; grantid: 430291/2018‐3 |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 31~ 4.4 53G 5DZ 5VS 7X7 8-1 8FE 8FG 8FH 8FI 8FJ A8Z AAHHS AAZKR ABDBF ABJCF ABUWG ACBWZ ACCFJ ACGFO ACIWK ACPRK ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ASPBG AVUZU AVWKF AZFZN BAWUL BBNVY BCNDV BDRZF BENPR BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 D-9 DIK EBD EBS EJD EMOBN ESTFP ESX F5P FEDTE FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HYE IAO IHR KQ8 L6V LH4 LK8 LW6 M48 M7P M7S ML0 MM. O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC PTHSS RNS RPM SV3 TEORI TUS UKHRP WIN CGR CUY CVF ECM EIF ITC NPM AAYXX CITATION 3V. 7QO 7T7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6017-bd4be3fafe73e973406b16ef3808e2106d74cdfef93b086b118172abc41e67f83 |
IEDL.DBID | RPM |
ISSN | 1751-7915 |
IngestDate | Tue Oct 22 14:59:15 EDT 2024 Tue Sep 17 21:28:16 EDT 2024 Sat Oct 26 04:22:17 EDT 2024 Thu Oct 10 22:14:38 EDT 2024 Thu Sep 26 15:48:50 EDT 2024 Sat Nov 02 11:57:46 EDT 2024 Sat Aug 24 01:35:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6017-bd4be3fafe73e973406b16ef3808e2106d74cdfef93b086b118172abc41e67f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2095-4429 0000-0002-3853-1646 0000-0001-8174-5466 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449651/ |
PMID | 34313008 |
PQID | 2573878298 |
PQPubID | 1016378 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8bcee78fe6934b8ca5a02465afb820de pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449651 proquest_miscellaneous_2555640862 proquest_journals_2573878298 crossref_primary_10_1111_1751_7915_13887 pubmed_primary_34313008 wiley_primary_10_1111_1751_7915_13887_MBT213887 |
PublicationCentury | 2000 |
PublicationDate | September 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bedford – name: Hoboken |
PublicationTitle | Microbial biotechnology |
PublicationTitleAlternate | Microb Biotechnol |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 12 2013; 29 2017; 7 2017; 8 2010; 18 1997; 272 2009; 82 2019; 10 2019; 15 2019; 14 2019; 18 2020; 13 2012; 14 2012; 13 2003; 278 2014; 22 2019; 1962 1998; 273 2018; 1863 2004; 70 1997; 15 2017; 33 1997; 13 1999; 15 2021; 118 2017; 34 2000; 97 2014; 15 1999; 294 2012; 28 2007; 2 2011; 286 2014; 117 2015; 6 2000; 20 1999; 145 2016; 17 2008; 283 2016; 12 2001; 276 2016; 6 2018; 18 2017; 16 2012; 190 2012; 192 2017; 56 2014; 38 2005; 6 2016 2009; 183 2014; 30 2019; 294 2016; 9 1994; 10 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 286 start-page: 38488 year: 2011 end-page: 38497 article-title: Yap5 protein‐regulated transcription of the TYW1 gene protects yeast from high iron toxicity publication-title: J Biol Chem – volume: 117 start-page: 135 year: 2014 end-page: 141 article-title: Suppression mechanism of the calcium sensitivity in ptp2Δmsg5Δ double disruptant involves a novel HOG‐independent function of Ssk2, transcription factor Msn2 and the protein kinase A component Bcy1 publication-title: J Biosci Bioeng – volume: 9 start-page: 53 year: 2016 end-page: 56 article-title: Comparison of xylose fermentation by two high‐performance engineered strains of publication-title: Biotechnol Reports – volume: 14 start-page: 611 year: 2012 end-page: 622 article-title: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by publication-title: Metab Eng – volume: 6 year: 2005 article-title: Characterization of the yeast ionome: a genome‐wide analysis of nutrient mineral and trace element homeostasis in publication-title: Genome Biol – volume: 6 start-page: 1165 year: 2015 article-title: Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in publication-title: Front Microbiol – volume: 2 start-page: 38 year: 2007 end-page: 41 article-title: Large‐scale high‐efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat Protoc – volume: 82 start-page: 1067 year: 2009 end-page: 1078 article-title: Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in for bioconversion of xylose to ethanol publication-title: Appl Microbiol Biotechnol – volume: 18 start-page: 88 year: 2019 article-title: Exploring the xylose paradox in through in vivo sugar signalomics of targeted deletants publication-title: Microb Cell Fact – volume: 278 start-page: 45391 year: 2003 end-page: 45396 article-title: The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in publication-title: J Biol Chem – volume: 192 start-page: 289 year: 2012 end-page: 318 article-title: Response to hyperosmotic stress publication-title: Genetics – volume: 1962 start-page: 65 year: 2019 end-page: 95 article-title: Whole‐genome annotation with BRAKER publication-title: Methods Mol Biol – volume: 8 start-page: 922 year: 2017 article-title: Fructose‐1,6‐bisphosphate couples glycolytic flux to activation of Ras publication-title: Nat Commun – volume: 28 start-page: 3211 year: 2012 end-page: 3217 article-title: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data publication-title: Bioinformatics – volume: 118 year: 2021 article-title: Yeast optimizes metal utilization based on metabolic network and enzyme kinetics publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 82 year: 2017 article-title: Production of fuels and chemicals from xylose by engineered : a review and perspective publication-title: Microb Cell Fact – volume: 15 start-page: 1351 year: 1997 end-page: 1357 article-title: Stress tolerance: the key to effective strains of industrial baker’s yeast publication-title: Nat Biotechnol – volume: 33 start-page: 75 year: 2017 article-title: Mechanisms of iron sensing and regulation in the yeast publication-title: World J Microbiol Biotechnol – volume: 6 start-page: 38676 year: 2016 article-title: Unraveling the genetic basis of xylose consumption in engineered strains publication-title: Sci Rep – volume: 294 start-page: 897 year: 1999 end-page: 907 article-title: ISU1 and ISU2: Members of a well‐conserved gene family for iron‐sulfur cluster assembly publication-title: J Mol Biol – volume: 29 start-page: 15 year: 2013 end-page: 21 article-title: STAR: Ultrafast universal RNA‐seq aligner publication-title: Bioinformatics – volume: 10 start-page: 1793 year: 1994 end-page: 1808 article-title: New heterologous modules for classical or PCR‐based gene disruptions in publication-title: Yeast – volume: 13 start-page: 621 year: 1997 end-page: 637 article-title: The AFT1 transcriptional factor is differentially required for expression of high‐affinity iron uptake genes in publication-title: Yeast – volume: 13 start-page: 145 year: 2020 article-title: Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinant strains at high xylose concentrations publication-title: Biotechnol Biofuels – volume: 190 start-page: 1157 year: 2012 end-page: 1195 article-title: The response to heat shock and oxidative stress in publication-title: Genetics – volume: 272 start-page: 11763 year: 1997 end-page: 11769 article-title: Negative control of heavy metal uptake by the BSD2 gene publication-title: J Biol Chem – volume: 12 year: 2016 article-title: Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by publication-title: PLOS Genet – volume: 12 start-page: 373 year: 2010 end-page: 385 article-title: Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron‐sulfur cluster publication-title: Cell Metab – volume: 283 start-page: 8318 year: 2008 end-page: 8330 article-title: Cellular and mitochondrial remodeling upon defects in iron‐sulfur protein biogenesis publication-title: J Biol Chem – volume: 56 start-page: 5991 year: 2017 end-page: 6005 article-title: Metal dependence of the xylose isomerase from sp. E2 explored by activity profiling and protein crystallography publication-title: Biochemistry – volume: 22 start-page: 111 year: 2014 end-page: 119 article-title: The role of mitochondria in cytosolic‐nuclear iron–sulfur protein biogenesis and in cellular iron regulation publication-title: Curr Opin Microbiol – volume: 10 start-page: 235 year: 2019 end-page: 251 article-title: Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview publication-title: Waste and Biomass Valorization – volume: 38 start-page: 254 year: 2014 end-page: 299 article-title: Nutrient sensing and signaling in the yeast publication-title: FEMS Microbiol Rev – volume: 14 year: 2019 article-title: PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production publication-title: PLoS One – volume: 278 start-page: 36582 year: 2003 end-page: 36587 article-title: Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in publication-title: J Biol Chem – volume: 18 start-page: 688 year: 2010 end-page: 699 article-title: Metal Ion roles and the movement of hydrogen during reaction catalyzed by D‐xylose isomerase: a joint X‐ray and neutron diffraction study publication-title: Structure – volume: 183 start-page: 873 year: 2009 end-page: 884 article-title: MNR2 regulates intracellular magnesium storage in publication-title: Genetics – volume: 30 start-page: 2114 year: 2014 end-page: 2120 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics – volume: 20 start-page: 7893 year: 2000 end-page: 7902 article-title: expresses three functionally distinct homologues of the nramp family of metal transporters publication-title: Mol Cell Biol – start-page: 125 year: 2016 end-page: 168 – volume: 294 start-page: 9489 year: 2019 end-page: 9502 article-title: Mitochondria export iron‐sulfur and sulfur intermediates to the cytoplasm for iron‐sulfur cluster assembly and tRNA thiolation in yeast publication-title: J Biol Chem – volume: 18 start-page: fox096 year: 2018 article-title: Assessing the effect of d‐xylose on the sugar signaling pathways of in strains engineered for xylose transport and assimilation publication-title: FEMS Yeast Research – volume: 7 start-page: 46155 year: 2017 article-title: Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered by influencing manganese homeostasis publication-title: Sci Rep – volume: 273 start-page: 23716 year: 1998 end-page: 23721 article-title: Metalloregulation of FRE1 and FRE2 homologs in publication-title: J Biol Chem – volume: 97 start-page: 5984 year: 2000 end-page: 5988 article-title: The yeast A kinases differentially regulate iron uptake and respiratory function publication-title: Proc Natl Acad Sci USA – volume: 276 start-page: 29515 year: 2001 end-page: 29519 article-title: CCC1 is a transporter that mediates vacuolar iron storage in yeast publication-title: J Biol Chem – volume: 15 start-page: 1541 year: 1999 end-page: 1553 article-title: Three new dominant drug resistance cassettes for gene disruption in publication-title: Yeast – volume: 17 start-page: 207 year: 2016 article-title: Xylose fermentation by : challenges and prospects publication-title: Int J Mol Sci – volume: 13 start-page: 623 year: 2012 article-title: High‐resolution genome‐wide scan of genes, gene‐networks and cellular systems impacting the yeast ionome publication-title: BMC Genom – volume: 15 start-page: 550 year: 2014 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biol – volume: 15 year: 2019 article-title: Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast publication-title: PLOS Genet – volume: 13 start-page: 5 year: 2020 article-title: Structure‐based directed evolution improves growth on xylose by influencing in vivo enzyme performance publication-title: Biotechnol Biofuels – volume: 34 start-page: 2115 year: 2017 end-page: 2122 article-title: Fast genome‐wide functional annotation through orthology assignment by eggNOG‐Mapper publication-title: Mol Biol Evol – volume: 1863 start-page: 61 year: 2018 end-page: 70 article-title: The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation publication-title: Biochim Biophys Acta ‐ Mol Cell Biol Lipids – volume: 70 start-page: 6816 year: 2004 end-page: 6825 article-title: engineered for xylose metabolism exhibits a respiratory response publication-title: Appl Environ Microbiol – volume: 145 start-page: 757 year: 1999 end-page: 767 article-title: Oxygen stress: A regulator of apoptosis in yeast publication-title: J Cell Biol – ident: e_1_2_10_20_1 doi: 10.1093/bioinformatics/bts611 – ident: e_1_2_10_36_1 doi: 10.1016/j.bbalip.2017.10.001 – ident: e_1_2_10_53_1 doi: 10.1038/srep46155 – ident: e_1_2_10_33_1 doi: 10.1007/s00253-008-1794-6 – ident: e_1_2_10_42_1 doi: 10.1093/femsyr/fox096 – ident: e_1_2_10_50_1 doi: 10.1534/genetics.112.140863 – ident: e_1_2_10_2_1 doi: 10.1038/nbt1297-1351 – ident: e_1_2_10_46_1 doi: 10.1128/MCB.20.21.7893-7902.2000 – ident: e_1_2_10_4_1 doi: 10.1093/bioinformatics/btu170 – ident: e_1_2_10_26_1 doi: 10.1074/jbc.M103944200 – ident: e_1_2_10_30_1 doi: 10.1074/jbc.272.18.11763 – ident: e_1_2_10_27_1 doi: 10.1074/jbc.M111.286666 – ident: e_1_2_10_34_1 doi: 10.1007/s11274-017-2215-8 – ident: e_1_2_10_19_1 doi: 10.1128/AEM.70.11.6816-6825.2004 – ident: e_1_2_10_14_1 doi: 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K – ident: e_1_2_10_10_1 doi: 10.1038/srep38676 – ident: e_1_2_10_25_1 doi: 10.1186/s13068-019-1643-0 – ident: e_1_2_10_18_1 doi: 10.1093/molbev/msx148 – ident: e_1_2_10_35_1 doi: 10.1074/jbc.273.37.23716 – ident: e_1_2_10_52_1 doi: 10.1007/s12649-017-0059-y – ident: e_1_2_10_43_1 doi: 10.1074/jbc.RA119.008600 – ident: e_1_2_10_13_1 doi: 10.1038/nprot.2007.15 – ident: e_1_2_10_12_1 doi: 10.1006/jmbi.1999.3294 – ident: e_1_2_10_48_1 doi: 10.3389/fmicb.2015.01165 – ident: e_1_2_10_57_1 doi: 10.1016/j.ymben.2012.07.011 – ident: e_1_2_10_39_1 doi: 10.1016/j.cmet.2010.08.001 – ident: e_1_2_10_55_1 doi: 10.1371/journal.pone.0212389 – ident: e_1_2_10_17_1 doi: 10.1007/978-1-4939-9173-0_5 – ident: e_1_2_10_23_1 doi: 10.1016/j.jbiosc.2013.06.022 – ident: e_1_2_10_44_1 doi: 10.1038/s41467-017-01019-z – ident: e_1_2_10_38_1 doi: 10.3390/ijms17030207 – ident: e_1_2_10_31_1 doi: 10.1186/s13059-014-0550-8 – ident: e_1_2_10_28_1 doi: 10.1016/j.btre.2016.01.003 – ident: e_1_2_10_51_1 doi: 10.1371/journal.pgen.1006372 – ident: e_1_2_10_8_1 doi: 10.1111/1574-6976.12065 – ident: e_1_2_10_40_1 doi: 10.1371/journal.pgen.1008037 – ident: e_1_2_10_56_1 doi: 10.1186/1471-2164-13-623 – ident: e_1_2_10_6_1 doi: 10.1002/(SICI)1097-0061(19970615)13:7<621::AID-YEA121>3.0.CO;2-U – ident: e_1_2_10_21_1 doi: 10.1016/j.str.2010.03.011 – ident: e_1_2_10_45_1 doi: 10.1534/genetics.109.106419 – ident: e_1_2_10_22_1 doi: 10.1186/s12934-017-0694-9 – ident: e_1_2_10_49_1 doi: 10.1073/pnas.100113397 – ident: e_1_2_10_16_1 doi: 10.1074/jbc.M705570200 – ident: e_1_2_10_54_1 doi: 10.1002/yea.320101310 – ident: e_1_2_10_9_1 doi: 10.1093/bioinformatics/bts635 – ident: e_1_2_10_29_1 doi: 10.1016/j.mib.2014.09.015 – ident: e_1_2_10_5_1 doi: 10.1186/s13068-020-01782-0 – ident: e_1_2_10_47_1 doi: 10.1074/jbc.M306584200 – ident: e_1_2_10_15_1 doi: 10.1074/jbc.M307447200 – ident: e_1_2_10_24_1 doi: 10.1021/acs.biochem.7b00777 – ident: e_1_2_10_7_1 doi: 10.1073/pnas.2020154118 – ident: e_1_2_10_11_1 doi: 10.1186/gb-2005-6-9-r77 – ident: e_1_2_10_32_1 doi: 10.1083/jcb.145.4.757 – ident: e_1_2_10_37_1 doi: 10.1534/genetics.111.128033 – ident: e_1_2_10_3_1 doi: 10.1007/978-3-319-25304-6_6 – ident: e_1_2_10_41_1 doi: 10.1186/s12934-019-1141-x |
SSID | ssj0060052 |
Score | 2.2637038 |
Snippet | Summary
The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in... The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based... The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based... Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2101 |
SubjectTerms | Anaerobic conditions Biomass Biorefineries Cation Transport Proteins Cellulose Enzymes Ethanol Fermentation Gene expression Genomes Heavy metals Homeostasis Iron Kinases Lignocellulose Metabolic Engineering Metabolism Metal concentrations Metal ions Mutation Productivity Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Signal transduction Sugar Transcriptomes Xylose Yeast Yeasts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9VAFL1IV7oQ62e0lRFcuIl9yWQ-smxLSxF0YwsFF8NMcgcDvkTMK-i_6W_xl3nvJO_xHgrduAvJEIZzM_eem5w5AXirJKIyRZsXOlKDoo3MvfJNzsFGg7YuQlL5ftIXV9WHa3W99asv1oRN9sATcEc2UBo3NqKuZRVsQ3eisqKVj4GKV4sp-y7qdTM15WDNbztnIx_W7VCNLNiYUb0vZFLPbdWgZNX_L375t0xym76m-nP-CB7OxFEcTxPeh3vYP4YHW3aCT-DLRlAnlkikWhDm6SgM37pxOYrVILr0EgHFT2rURxSREvO8-6gXXS8--4b3YQ3LX5Q_ft82SQU8dh6fwtX52eXpRT7_PCFvNFee0FYBZfQRjcTaSCrcodAYpV1YJMR0a6qmjRhrGaitCbwB1ZQ-NFWB2kQrn8FeP_T4AkRQLREH9LpGrErfhBpliOhLr9DEhc_g3RpO933yyHDr3oKRd4y8S8hncMJwb4axuXU6QSF3c8jdXSHP4GAdLDevuNFR6pGW6E5tM3izuUxrhT-A-B6HGx6jlK64icvg-RTbzUwkMSlJhCgDsxP1nanuXum7r8mP21Zsul9kcJSej7swcB9PLst09PJ_oPEK7pess0m6twPYW_24wUMiSqvwOq2JP-PWEtI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BucAB8SZQkJE4cAlt4viRE6KIpUKCC61UcbHsZAyR2KQ0Wwn-PTPeZNkVCG5W7IMzM575xv48BniuJKIyRZsXOlKCoo3MvfJNzspGg7YuQmL5ftTHp9X7M3U2bbiNE61y9onJUbdDw3vkB2Ra0lI4q-2r8-85vxrFp6vTExpX4VpRGsPJl128mz2x5j3PqZwPs3coUhZcnlG9LGTi0G1FolSw_28o80-y5DaITVFocQtuTvBRvF7r-zZcwf4O3NgqKngXPm9odWKJBK0FST61wvCtG5ejWA2iS1sJKH5Quj6iiOSepztIveh68ck3fBtrWP4kLyKaRAUeO4_34HTx9uTNcT69oJA3msNPaKuAMvqIRmJtJEXvUGiM0h5apGRPt6Zq2oixloFym8C3UE3pQ1MVqE208j7s9UOPD0EE1RJ6QK9rxKr0TahRhoi-9ApNPPQZvJil6c7XhTLcnGCw4B0L3iXBZ3DE0t4M4wrX6cNw8cVNC8bZQOHb2Ii6llWwDVkQwQmtfAwEWlrMYH_WlZuW3eh-G0kGzzbdtGD4FMT3OFzyGKV0xZlcBg_Wqt3MRBKckoSKMjA7St-Z6m5P331NRbltxZX3iwwOknn8Twbuw9FJmVqP_v0jj-F6yTSaRGvbh73VxSU-IRy0Ck-Tsf8C_BAH7g priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BucAB8SalVEbiwCWliZ85IESrVhUSXOhKFZfITsY0UjeBzVZq_33H3iR0xYrerNiR7Jmx5xv78xjgveSIUmd1milPAYrSPLXSVmlQNmo0ReYiy_e7OpmJr2fy7O9zQIMA-42hXXhPara42Lv6c_2ZJvynkZVDHjALaRflXsZpztyHB7mgMD3w-MR0pKDCBuiQ22fDT2tuKWbv3wQ5_2VO3ka00SUdP4HHA5ZkX1bKfwr3sH0Gj25lGHwOPyeOHZsjDZGRGmLJdRdNP-_ZsmNN3FdAdkWxe4_M01o9XEhqWdOyH7YKV7O6-TUtKayKvOC-sfgCZsdHp4cn6fCcQlqp4ItcLRxybz1qjoXm5MpdptBzs2-QIj9Va1HVHn3BHQU6LlxJ1bl1lchQaW_4S9hquxZfA3OyJiiBVhWIIreVK5A7jza3ErXftwl8GKVZ_l5lzSjHaCMIvgyCL6PgEzgI0p6ahXTX8UO3-FUOs6c0jny5Nh5VwYUzFZkTYQslrXeEYGpMYGfUVTmaUEmLETcEgAqTwLupmmZPOBKxLXaXoY2USoSwLoFXK9VOPeGErThBpAT0mtLXurpe0zbnMUO3ESENf5bAx2ged8mg_HZwmsfS9v8H8gYe5oFTEzluO7C1XFziWwJFS7cbjf0G7koKNw priority: 102 providerName: Scholars Portal – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ditUwEB50vdEL8d_qKhG88Ka6bZqfXrrisgiK4C4IXoSknWhhTyvbs6Bv47P4ZM7ktOUcFcS70qQlzGRmvklnvgI8VRJRmaLNCx0pQdFG5l75Jmdlo0FbFyFV-b7Tx6fVm49qribkXpgNP8Ry4MaWkfw1G7gP45aRU9wrmGxRPS8kWcpluMK8MUyfX1bvZ2es-dgz9UROkyd2Hy7m-e0FO4Ep8ff_DXT-WTu5jWlTUDq6AdcnNClebtR_Ey5hfwuubXEM3oZPS5WdWCEhbUGKSFdhOOvG1SjWg-jSyQKKb5S9jygieeupJakXXS8--Iabs4bVd3IqP380qTR47DzegdOj1yevjvPpjwp5ozkchbYKKKOPaCTWRlI0D4XGKO2BRUr-dGuqpo0Yaxko1wnclWpKH5qqQG2ilXdhrx96vA8iqJbQBHpdI1alb0KNMkT0pVdo4oHP4NksTvd1Q5zh5oSDJe9Y8i5JPoNDFvcyjRmv043h_LObDMjZQOHc2Ii6llWwDe0oghda-RgIxLSYwf6sLDeZ4ejIH0lLGKi2GTxZhsmA-KuI73G44DlK6YozuwzubXS7rEQSvJKEkjIwO1rfWeruSN99SSTdtmIm_iKDF2l__EsG7u3hSZmuHvz3Ew_hasmVNqnybR_21ucX-Iig0jo8TsbwC0fvDLA priority: 102 providerName: Wiley-Blackwell |
Title | Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.13887 https://www.ncbi.nlm.nih.gov/pubmed/34313008 https://www.proquest.com/docview/2573878298 https://www.proquest.com/docview/2555640862 https://pubmed.ncbi.nlm.nih.gov/PMC8449651 https://doaj.org/article/8bcee78fe6934b8ca5a02465afb820de |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-aDkb3MPZ_3rrgwR724iS2rD9-XEqzMkgJWwuBPRjJPnWGxi51Ctu32WfZJ9tJsUPCBoO9CGEZLO5Out_JvzsBvOMMkcu4jGJhKUARkkWa6yJyykaJKouNZ_mei7PL9NOSLw-A97kwnrRfmGpUX69GdfXNcytvVsW454mNF_MTlboq5_F4AAMy0D5E32y_wh10djV8HGWH3GPsajLyUcxoQR3BfUY-k03cfZI7nsgX7P8byvyTLLkLYr0Xmj2Chx18DD9spvkYDrB-Ag92igo-ha9bWl24QoLWIUne90xzXbWrNlw3YeWPEjD8TuF6i6Gl7bnLQarDqg6_6MJlYzWrH7SL_PpZeC5wW2l8Bpez04uTs6i7QiEqhPM_pkwNMqstSoaZZOS-TSzQMjVRSNGeKGValBZtxgwFN8alocpEmyKNUUir2HM4rJsaX0JoeEnwAbXIENNEFyZDZizqRHOUdqIDeN-LM7_ZVMrI-wjDKSF3Ssi9EgKYOnFvX3Mlrv2D5vYq7xSdK0P-WyqLImOpUQWZEOEJwbU1hFpKDOC4V1berbs2pw2IKQI9mQrg7XaYVoz7DaJrbO7cO5yL1IVyAbzY6HY7k942ApB7Wt-b6v4IGamvyt0ZZQBjbx__kkE-n14kvvfqv7_1Go4SR7HxlLdjOFzf3uEbwkhrM4RBki6olUtJrZp9HMK96en54vPQnzpQO0_V0K-c34MQGAw |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,11574,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,46064,46488,50826,50935,53804,53806,74073,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BOQAHxJtAASNx4BLaxPEjJ0QRywJtL2yliktkJ2OIxCal2Urw75nxZpddgeBmxT44M-OZb-zPY4DnSiIqkzVppgMlKNrI1ClXp6xsNGjLzEeW77GenhQfTtXpuOE2jLTKlU-Mjrrpa94j3yPTkpbCWWlfnX1P-dUoPl0dn9C4DFcKSbGab4pP3q08seY9z7GcD7N3KFJmXJ5Rvcxk5NBtRKJYsP9vKPNPsuQmiI1RaHITbozwUbxe6vsWXMLuNlzfKCp4Bz6vaXVijgStBUk-tnz_rR3mg1j0oo1bCSh-ULo-oAjknsc7SJ1oO_HJ1Xwbq5__JC8i6kgFHlqHd-Fk8nb2ZpqOLyiktebw45vCowwuoJFYGknR22cag7T7FinZ040p6iZgKKWn3MbzLVSTO18XGWoTrLwHO13f4QMQXjWEHtDpErHIXe1LlD6gy51CE_ZdAi9W0qzOloUyqlWCwYKvWPBVFHwCByzt9TCucB0_9OdfqnHBVNZT-DY2oC5l4W1NFkRwQisXPIGWBhPYXemqGpfdUP02kgSerbtpwfApiOuwv-AxSumCM7kE7i9Vu56JJDglCRUlYLaUvjXV7Z6u_RqLctuCK-9nCexF8_ifDKqjg1keWw___SNP4ep0dnRYHb4__vgIruVMqYkUt13YWZxf4GPCRAv_JBr-L2VACtA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagSAgOiGcJFDASBy5hmzh-5IQosCqvColWWnGx7GQMkdikNFsJ_j0zXu-yKxDcrNgHZ2Y88439eczYEykApC7avFABExSlRe6ka3JSNmgwdeEjy_dIHZ5Ub2dylvhPY6JVrnxidNTt0NAe-QRNSxgMZ7WZhESL-Phq-vz0e04vSNFJa3pO4yK7pDFLIZvXs3XypWj_M5X2ISYPRs2CSjXKZ4WIfLqNqBSL9_8Ncf5JnNwEtDEiTa-zawlK8hdL3d9gF6C_ya5uFBi8xT6vKXZ8DgizOWohtvzwrRvnI18MvIvbCsB_YOo-Ag_oqtN9pJ53Pf_kGrqZNcx_okfhTaQFj52D2-xk-vr45WGeXlPIG0WhyLeVBxFcAC2g1gIjuS8UBGH2DWDip1pdNW2AUAuPeY6nG6m6dL6pClA6GHGH7fRDD3cZ97JFJAFO1QBV6Rpfg_ABXOkk6LDvMvZ0JU17uiyaYVfJBgnekuBtFHzGDkja62FU7Tp-GM6-2LR4rPEYyrUJoGpRedOgNSG0UNIFjwCmhYztrXRl0xIc7W-DydjjdTcuHjoRcT0M5zRGSlVRVpex3aVq1zMRCK0EIqSM6S2lb011u6fvvsYC3aaiKvxFxibRPP4nA_vh4LiMrXv__pFH7DLavH3_5ujdfXalJHZNZLvtsZ3F2Tk8QHi08A-j3f8C5jEPCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+metal+ion+metabolisms+to+improve+xylose+fermentation+in+Saccharomyces+cerevisiae&rft.jtitle=Microbial+biotechnology&rft.au=Gisele+Cristina+de+Lima+Palermo&rft.au=Coutoun%C3%A9%2C+Natalia&rft.au=Ribeiro+Bueno%2C+Jo%C3%A3o+Gabriel&rft.au=Lucas+Ferreira+Maciel&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1751-7915&rft.volume=14&rft.issue=5&rft.spage=2101&rft.epage=2115&rft_id=info:doi/10.1111%2F1751-7915.13887&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon |