Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae

Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic condi...

Full description

Saved in:
Bibliographic Details
Published inMicrobial biotechnology Vol. 14; no. 5; pp. 2101 - 2115
Main Authors Palermo, Gisele Cristina de Lima, Coutouné, Natalia, Bueno, João Gabriel Ribeiro, Maciel, Lucas Ferreira, Santos, Leandro Vieira
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.09.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. Designing high‐performance xylose‐fermenting yeasts is a key step to achieve scalable production in lignocellulose‐based biorefineries. This work explores metabolisms involved in metal homeostasis which positively affect xylose fermentation in engineered Saccharomyces cerevisiae strains. In summary, the manuscript indicated (i) the vacuolar Fe2+/Mn2+ transporter CCC1, and the protein involved in metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption; (ii) provides a detailed molecular and physiological characterization of the best‐performing mutants connecting intracellular metal concentration levels with fermentation profiles; (iii) a temporal detailed expression profile indicating a metabolic remodeling in response to xylose, demonstrating changes in the main sugar sensing signaling pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-7915
1751-7915
DOI:10.1111/1751-7915.13887