Pixel lensing as a way to detect extrasolar planets in M31
We study the possibility to detect extrasolar planets in M31 through pixel-lensing observations. Using a Monte Carlo approach, we select the physical parameters of the binary lens system, a star hosting a planet, and we calculate the pixel-lensing light curve taking into account the finite source ef...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 399; no. 1; pp. 219 - 228 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
11.10.2009
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study the possibility to detect extrasolar planets in M31 through pixel-lensing observations. Using a Monte Carlo approach, we select the physical parameters of the binary lens system, a star hosting a planet, and we calculate the pixel-lensing light curve taking into account the finite source effects. Indeed, their inclusion is crucial since the sources in M31 microlensing events are mainly giant stars. Light curves with detectable planetary features are selected by looking for significant deviations from the corresponding Paczyński shapes. We find that the time-scale of planetary deviations in light curves increase (up to 3–4 d) as the source size increases. This means that only few exposures per day, depending also on the required accuracy, may be sufficient to reveal in the light curve a planetary companion. Although the mean planet mass for the selected events is about , even small mass planets (MP < 20 M⊕) can cause significant deviations, at least in the observations with large telescopes. However, even in the former case, the probability to find detectable planetary features in pixel-lensing light curves is at most a few per cent of the detectable events, and therefore many events have to be collected in order to detect an extrasolar planet in M31. Our analysis also supports the claim that the anomaly found in the candidate event PA-99-N2 towards M31 can be explained by a companion object orbiting the lens star. |
---|---|
Bibliography: | ark:/67375/HXZ-TTXF80CR-J istex:B0350685BDA7371290F92DE8C14ACD9B9DD16DDC ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1111/j.1365-2966.2009.15184.x |