Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI

Abstract A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations r...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 28; no. 9; pp. 3095 - 3114
Main Authors Schaefer, Alexander, Kong, Ru, Gordon, Evan M, Laumann, Timothy O, Zuo, Xi-Nian, Holmes, Avram J, Eickhoff, Simon B, Yeo, B T Thomas
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhx179