NADP(H) allosterically regulates the interaction between ferredoxin and ferredoxin‐NADP+ reductase
Ferredoxin‐NADP+ reductase (FNR) in plants receives electrons from ferredoxin (Fd) at the end of the photosynthetic electron transfer chain and converts NADP+ to NADPH. The interaction between Fd and FNR in plants was previously shown to be attenuated by NADP(H). Here, we investigated the molecular...
Saved in:
Published in | FEBS open bio Vol. 9; no. 12; pp. 2126 - 2136 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.12.2019
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ferredoxin‐NADP+ reductase (FNR) in plants receives electrons from ferredoxin (Fd) at the end of the photosynthetic electron transfer chain and converts NADP+ to NADPH. The interaction between Fd and FNR in plants was previously shown to be attenuated by NADP(H). Here, we investigated the molecular mechanism of this phenomenon using maize FNR and Fd, as the three‐dimensional structure of this complex is available. NADPH, NADP+, and 2′5′‐ADP differentially affected the interaction, as revealed through kinetic and physical binding analyses. Site‐directed mutations of FNR which change the affinity for NADPH altered the affinity for Fd in the opposite direction to that for NADPH. We propose that the binding of NADP(H) causes a conformational change of FNR which is transferred to the Fd‐binding region through different domains of FNR, resulting in allosteric changes in the affinity for Fd.
The interaction between ferredoxin (Fd) and Fd‐NADP+ reductase (FNR) in plants is attenuated by NADP(H). Site‐directed mutations of FNR which change the affinity for NADPH altered the affinity for Fd in the opposite direction. We propose that the binding of NADP(H) leads to conformational changes of FNR, resulting in allosteric changes in the affinity for Fd. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2211-5463 2211-5463 |
DOI: | 10.1002/2211-5463.12752 |