Structural and functional characterization of recombinant human serum transferrin secreted from Pichia pastoris

Serum transferrin is an iron-binding glycoprotein with a bilobal structure. It binds iron ions in the blood serum and delivers them into target cells via transferrin receptor. We identified structural and functional characteristics of recombinant human transferrin which is produced in the yeast Pich...

Full description

Saved in:
Bibliographic Details
Published inBioscience, biotechnology, and biochemistry Vol. 74; no. 2; pp. 309 - 315
Main Authors Mizutani, K., Kyoto Univ., Uji (Japan), Hashimoto, K, Takahashi, N, Hirose, M, Aibara, S, Mikami, B
Format Journal Article
LanguageEnglish
Published Tokyo Japan Society for Bioscience, Biotechnology, and Agrochemistry 2010
Japan Society for Bioscience Biotechnology and Agrochemistry
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Serum transferrin is an iron-binding glycoprotein with a bilobal structure. It binds iron ions in the blood serum and delivers them into target cells via transferrin receptor. We identified structural and functional characteristics of recombinant human transferrin which is produced in the yeast Pichia pastoris. Using the signal sequence of the α factor of the yeast Saccharomyces cerevisiae, high-level secretion was obtained, up to 30 mg/l of culture medium. Correct processing at designed sites was confirmed by N-terminal sequence analysis. Carbohydrate modification was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis after digestion with endo-β-N-acetylglucosaminidase H. Reflecting the secondary structure, the circular dichroism spectrum of the recombinant protein was indistinguishable from that of serum transferrin. Consequently, the recombinant product had an iron binding function just as the serum specimen has: two Fe 3+ sites existed in a recombinant transferrin molecule, as estimated by titration analysis using visible absorption, fluorescence spectra, and electrophoretic behavior in urea denaturing polyacrylamide gel electrophoresis (PAGE).
Bibliography:F30
L50
2010002075
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0916-8451
1347-6947
DOI:10.1271/bbb.90635