Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health

Due to increasing population growth and declining arable land on Earth, astroagriculture will be vital to terraform Martian regolith for settlement. Nodulating plants and their N-fixing symbionts may play a role in increasing Martian soil fertility. On Earth, clover (Melilotus officinalis) forms a s...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 9; p. e0257053
Main Authors Harris, Franklin, Dobbs, John, Atkins, David, Ippolito, James A, Stewart, Jane E
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 29.09.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to increasing population growth and declining arable land on Earth, astroagriculture will be vital to terraform Martian regolith for settlement. Nodulating plants and their N-fixing symbionts may play a role in increasing Martian soil fertility. On Earth, clover (Melilotus officinalis) forms a symbiotic relationship with the N-fixing bacteria Sinorhizobium meliloti; clover has been previously grown in simulated regolith yet without bacterial inoculation. In this study, we inoculated clover with S. meliloti grown in potting soil and regolith to test the hypothesis that plants grown in regolith can form the same symbiotic associations as in soils and to determine if greater plant biomass occurs in the presence of S. meliloti regardless of growth media. We also examined soil NH.sub.4 concentrations to evaluate soil augmentation properties of nodulating plants and symbionts. Greater biomass occurred in inoculated compared to uninoculated groups; the inoculated average biomass in potting mix and regolith (2.23 and 0.29 g, respectively) was greater than the uninoculated group (0.11 and 0.01 g, respectively). However, no significant differences existed in NH.sub.4 composition between potting mix and regolith simulant. Linear regression analysis results showed that: i) symbiotic plant-bacteria relationships differed between regolith and potting mix, with plant biomass positively correlated to regolith-bacteria interactions; and, ii) NH.sub.4 production was limited to plant uptake yet the relationships in regolith and potting mix were similar. It is promising that plant-legume symbiosis is a possibility for Martian soil colonization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0257053