Role of forest regrowth in global carbon sink dynamics
Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 10; pp. 4382 - 4387 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
National Academy of Sciences
05.03.2019
|
Series | From the Cover |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component of current carbon uptake. Here we use a global compilation of forest age observations, combined with a terrestrial biosphere model with explicit modeling of forest regrowth, to partition the global forest carbon sink between old-growth and regrowth stands over the period 1981–2010. For 2001–2010 we find a carbon sink of 0.85 (0.66–0.96) Pg year−1 located in intact old-growth forest, primarily in the moist tropics and boreal Siberia, and 1.30 (1.03–1.96) Pg year−1 located in stands regrowing after past disturbance. Approaching half of the sink in regrowth stands would have occurred from demographic changes alone, in the absence of other environmental changes. These age-constrained results show consistency with those simulated using an ensemble of demographically-enabled terrestrial biosphere models following an independent reconstruction of historical land use and management. We estimate that forests will accumulate an additional 69 (44–131) Pg C in live biomass from changes in demography alone if natural disturbances, wood harvest, and reforestation continue at rates comparable to those during 1981–2010. Our results confirm that it is not possible to understand the current global terrestrial carbon sink without accounting for the sizeable sink due to forest demography. They also imply that a large portion of the current terrestrial carbon sink is strictly transient in nature. |
---|---|
Bibliography: | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Christopher B. Field, Stanford University, Stanford, CA, and approved December 21, 2018 (received for review July 11, 2018) Author contributions: T.A.M.P., M.L., B.S., and A.A. designed research; T.A.M.P., M.L., B.P., V.H., and L.C. performed research; T.A.M.P., M.L., B.P., V.H., and L.C. analyzed data; and T.A.M.P., M.L., B.S., B.P., A.A., V.H., and L.C. wrote the paper. |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1810512116 |