Alternative Splicing in the Aggrecan G3 Domain Influences Binding Interactions with Tenascin-C and Other Extracellular Matrix Proteins
The proteoglycans aggrecan, versican, neurocan, and brevican bind hyaluronan through their N-terminal G1 domains, and other extracellular matrix proteins through the C-type lectin repeat in their C-terminal G3 domains. Here we identify tenascin-C as a ligand for the lectins of all these proteoglycan...
Saved in:
Published in | The Journal of biological chemistry Vol. 279; no. 13; pp. 12511 - 12518 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.03.2004
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The proteoglycans aggrecan, versican, neurocan, and brevican bind hyaluronan through their N-terminal G1 domains, and other extracellular matrix proteins through the C-type lectin repeat in their C-terminal G3 domains. Here we identify tenascin-C as a ligand for the lectins of all these proteoglycans and map the binding site on the tenascin molecule to fibronectin type III repeats, which corresponds to the proteoglycan lectin-binding site on tenascin-R. In the G3 domain, the C-type lectin is flanked by epidermal growth factor (EGF) repeats and a complement regulatory protein-like motif. In aggrecan, these are subject to alternative splicing. To investigate if these flanking modules affect the C-type lectin ligand interactions, we produced recombinant proteins corresponding to aggrecan G3 splice variants. The G3 variant proteins containing the C-type lectin showed different affinities for various ligands, including tenascin-C, tenascin-R, fibulin-1, and fibulin-2. The presence of an EGF motif enhanced the affinity of interaction, and in particular the splice variant containing both EGF motifs had significantly higher affinity for ligands, such as tenascin-R and fibulin-2. The mRNA for this splice variant was shown by reverse transcriptase-PCR to be expressed in human chondrocytes. Our findings suggest that alternative splicing in the aggrecan G3 domain may be a mechanism for modulating interactions and extracellular matrix assembly. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0021-9258 1083-351X 1083-351X |
DOI: | 10.1074/jbc.M400242200 |