Alternative Splicing in the Aggrecan G3 Domain Influences Binding Interactions with Tenascin-C and Other Extracellular Matrix Proteins

The proteoglycans aggrecan, versican, neurocan, and brevican bind hyaluronan through their N-terminal G1 domains, and other extracellular matrix proteins through the C-type lectin repeat in their C-terminal G3 domains. Here we identify tenascin-C as a ligand for the lectins of all these proteoglycan...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 279; no. 13; pp. 12511 - 12518
Main Authors Day, Joanna M., Olin, Anders I., Murdoch, Alan D., Canfield, Ann, Sasaki, Takako, Timpl, Rupert, Hardingham, Timothy E., Aspberg, Anders
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.03.2004
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The proteoglycans aggrecan, versican, neurocan, and brevican bind hyaluronan through their N-terminal G1 domains, and other extracellular matrix proteins through the C-type lectin repeat in their C-terminal G3 domains. Here we identify tenascin-C as a ligand for the lectins of all these proteoglycans and map the binding site on the tenascin molecule to fibronectin type III repeats, which corresponds to the proteoglycan lectin-binding site on tenascin-R. In the G3 domain, the C-type lectin is flanked by epidermal growth factor (EGF) repeats and a complement regulatory protein-like motif. In aggrecan, these are subject to alternative splicing. To investigate if these flanking modules affect the C-type lectin ligand interactions, we produced recombinant proteins corresponding to aggrecan G3 splice variants. The G3 variant proteins containing the C-type lectin showed different affinities for various ligands, including tenascin-C, tenascin-R, fibulin-1, and fibulin-2. The presence of an EGF motif enhanced the affinity of interaction, and in particular the splice variant containing both EGF motifs had significantly higher affinity for ligands, such as tenascin-R and fibulin-2. The mRNA for this splice variant was shown by reverse transcriptase-PCR to be expressed in human chondrocytes. Our findings suggest that alternative splicing in the aggrecan G3 domain may be a mechanism for modulating interactions and extracellular matrix assembly.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1074/jbc.M400242200