Characterization of Hard Piezoelectric Lead-Free Ceramics

K 4 CuNb 8 O 23 doped K 0.45 Na 0.55 NbO 3 (KNN-KCN) ferroelectric ceramics were found to exhibit asymmetrical polarization hysteresis loops, related to the development of an internal bias field. The internal bias field is believed to be the result of defect dipoles of acceptor ions and oxygen vacan...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 56; no. 8; pp. 1523 - 1527
Main Authors Shujun Zhang, Jong Bong Lim, Hyeong Jae Lee, Shrout, T.R.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.08.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:K 4 CuNb 8 O 23 doped K 0.45 Na 0.55 NbO 3 (KNN-KCN) ferroelectric ceramics were found to exhibit asymmetrical polarization hysteresis loops, related to the development of an internal bias field. The internal bias field is believed to be the result of defect dipoles of acceptor ions and oxygen vacancies, which lead to piezoelectric "hardening" effect, by stabilizing and pinning of the domain wall motion. The dielectric loss for the hard lead-free piezoelectric ceramic was found to be 0.6%, with mechanical quality factors Q on the order of >1500. Furthermore, the piezoelectric properties were found to decrease and the coercive field increased, when compared with the undoped material, exhibiting a typical characteristic of "hard" behavior. The temperature usage range was limited by the polymorphic phase transition temperature, being 188degC. The full set of material constants was determined for the KNN-KCN materials. Compared with conventional hard PZT ceramics, the lead-free possessed lower dielectric and piezoelectric properties; however, comparable values of mechanical Q, dielectric loss, and coercive fields were obtained, making acceptor modified KNN based lead-free piezoelectric material promising for high-power applications, where leadfree materials are desirable.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2009.1215