Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio

Association between electroencephalography (EEG) and individually personal information is being explored by the scientific community. Though person identification using EEG is an attraction among researchers, the complexity of sensing limits using such technologies in real-world applications. In thi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 9; p. e0238872
Main Authors Jayarathne, Isuru, Cohen, Michael, Amarakeerthi, Senaka
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 11.09.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Association between electroencephalography (EEG) and individually personal information is being explored by the scientific community. Though person identification using EEG is an attraction among researchers, the complexity of sensing limits using such technologies in real-world applications. In this research, the challenge has been addressed by reducing the complexity of the brain signal acquisition and analysis processes. This was achieved by reducing the number of electrodes, simplifying the critical task without compromising accuracy. Event-related potentials (ERP), a.k.a. time-locked stimulation, was used to collect data from each subject's head. Following a relaxation period, each subject was visually presented a random four-digit number and then asked to think of it for 10 seconds. Fifteen trials were conducted with each subject with relaxation and visual stimulation phases preceding each mental recall segment. We introduce a novel derived feature, dubbed Inter-Hemispheric Amplitude Ratio (IHAR), which expresses the ratio of amplitudes of laterally corresponding electrode pairs. The feature was extracted after expanding the training set using signal augmentation techniques and tested with several machine learning (ML) algorithms, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and k-Nearest Neighbor (kNN). Most of the ML algorithms showed 100% accuracy with 14 electrodes, and according to our results, perfect accuracy can also be achieved using fewer electrodes. However, AF3, AF4, F7, and F8 electrode combination with kNN classifier which yielded 99.0±0.8% testing accuracy is the best for person identification to maintain both user-friendliness and performance. Surprisingly, the relaxation phase manifested the highest accuracy of the three phases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0238872