基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和BP神经网络的SPAD估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与BP神经网络模型进行比较。结果表明:SPAD值与一阶...
Saved in:
Published in | 农业工程学报 Vol. 32; no. 16; pp. 135 - 142 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
河南科技大学农学院,洛阳 471003
2016
西北农林科技大学资源环境学院,杨凌,712100%西北农林科技大学资源环境学院,杨凌 712100 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2016.16.019 |
Cover
Summary: | 为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和BP神经网络的SPAD估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与BP神经网络模型进行比较。结果表明:SPAD值与一阶微分光谱在763nm处具有最大相关系数(R=0.901);以763 nm处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片SPAD估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测SPAD值作为输出,构建BP神经网络模型,其建模与验模R2分别为0.887和0.896,RMSE为2.782,RE为4.59%,与其他回归模型相比,BP神经网络模型预测精度最高,研究表明BP神经网络对叶绿素具有较好的预测能力,是估算玉米叶片SPAD值的一种实时高效的方法。 |
---|---|
Bibliography: | Leaf chlorophyll content provides valuable information about the productivity, physiological status of vegetation. Measurement of hyperspectral reflectance offers a rapid, nondestructive method for leaf chlorophyll content estimation. In order to improve the accuracy of hyperspectral estimation about the leaf chlorophyll content, in this paper, the modeling of chlorophyll content of maize leaves based on the hyperspectrum was developed. The field experiments were conducted in the testing farm of Northwest Agriculture and Forest University, Yangling City, Shaanxi Province. During the maize growth period of milk stage, hyperspectral reflectance measurements were collected in wavelength of 350 to 2500 nm using spectrometer(SVC HR-1024i), and at the same time, chlorophyll content of maize leaves was obtained by using SPAD-502. There were totally 120 samples collected, two thirds of which were utilized as the training set and remaining one third as the validation set. The model constructed relied on the training s |
ISSN: | 1002-6819 |
DOI: | 10.11975/j.issn.1002-6819.2016.16.019 |