Current challenges in the diagnosis of zearalenone toxicosis as illustrated by a field case of hyperestrogenism in suckling piglets

The mycotoxin zearalenone (ZEN) causes functional and morphological alterations in reproductive organs of pigs. In the field, diagnosis of ZEN-induced disorders is often challenging, as relevant feed lots are no longer available, or feed analysis results are not conclusive. Here, we report a field c...

Full description

Saved in:
Bibliographic Details
Published inPorcine Health Management. Vol. 4; no. 1; p. 18
Main Authors Hennig-Pauka, Isabel, Koch, Franz-Josef, Schaumberger, Simone, Woechtl, Bettina, Novak, Johannes, Sulyok, Michael, Nagl, Veronika
Format Journal Article
LanguageEnglish
Published England BioMed Central 12.09.2018
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mycotoxin zearalenone (ZEN) causes functional and morphological alterations in reproductive organs of pigs. In the field, diagnosis of ZEN-induced disorders is often challenging, as relevant feed lots are no longer available, or feed analysis results are not conclusive. Here, we report a field case of hyperestrogenism in newborn piglets. Surprisingly, more than 50 fungal metabolites were detected in hay pellets fed to gestating sows, including ZEN and its modified form zearalenone-14-sulfate (ZEN-14-S). Despite the broad contamination range in this unconventional feed component, a definite diagnosis of mycotoxicosis could not be achieved. In this context, current limitations regarding the confirmation of suspected cases of ZEN-induced disorders are discussed, covering both feed analysis and the biomarker approach. A piglet producer with 200 sows experienced a sudden increase in suckling piglet losses up to 30% by lower vitality and crushing. Predominant clinical signs were splay legs and signs of hyperestrogenism such as swollen and reddened vulvae in newborn piglets. The first differential diagnosis was ZEN mycotoxicosis although feed batches had not been changed for months with the exception of ground hay pellets, which had been included in the diet five months before. Analysis of hay pellets resulted in a sum value of ZEN and its modified forms of more than 1000 μg/kg, with ZEN-14-S alone accounting for 530 μg/kg. Considering the inclusion rate of 7% in the diet for gestating sows, the severe impact of the additional ZEN load due to the contaminated hay pellets seemed unrealistic but could not be completely excluded either. One month after hay pellets had been removed from the diet no further clinical signs were observed. Enrichment materials and other fibre sources can contain significant amounts of mycotoxins and should be therefore included in feed analysis. Adequate methods for broad spectrum mycotoxin determination, including modified mycotoxins, are important. As highlighted by this field case, there is a need to establish reliable biomarkers for ZEN exposure in pigs. Currently, available biomarkers do not allow a solid prediction of the ZEN intake of pigs under field conditions, which limits their application to experimental studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2055-5660
2055-5660
DOI:10.1186/s40813-018-0095-4