Nano-carrier DMSN for effective multi-antigen vaccination against SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has had a profound impact on the global health and economy. While mass vaccination for herd immunity is effective, emerging SARS-CoV-2 variants can evade spike protein-based COVID-19 vaccines. In this study, we devel...
Saved in:
Published in | Journal of nanobiotechnology Vol. 22; no. 1; p. 11 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
03.01.2024
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has had a profound impact on the global health and economy. While mass vaccination for herd immunity is effective, emerging SARS-CoV-2 variants can evade spike protein-based COVID-19 vaccines. In this study, we develop a new immunization strategy by utilizing a nanocarrier, dendritic mesoporous silica nanoparticle (DMSN), to deliver the receptor-binding domain (RBD) and conserved T-cell epitope peptides (DMSN-P-R), aiming to activate both humoral and cellular immune responses in the host. The synthesized DMSN had good uniformity and dispersion and showed a strong ability to load the RBD and peptide antigens, enhancing their uptake by antigen-presenting cells (APCs) and promoting antigen delivery to lymph nodes. The DMSN-P-R vaccine elicited potent humoral immunity, characterized by highly specific RBD antibodies. Neutralization tests demonstrated significant antibody-mediated neutralizing activity against live SARS-CoV-2. Crucially, the DMSN-P-R vaccine also induced robust T-cell responses that were specifically stimulated by the RBD and conserved T-cell epitope peptides of SARS-CoV-2. The DMSN demonstrated excellent biocompatibility and biosafety in vitro and in vivo, along with degradability. Our study introduces a promising vaccine strategy that utilizes nanocarriers to deliver a range of antigens, effectively enhancing both humoral and cellular immune responses to prevent virus transmission. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1477-3155 1477-3155 |
DOI: | 10.1186/s12951-023-02271-w |