Why is Babesia not killed by artemisinin like Plasmodium?
Babesia spp. are intraerythrocytic apicomplexans that digest and utilize red blood cells in a similar way to intraerythrocytic Plasmodium spp., but unlike the latter, are not sensitive to artemisinin. A comparison of Babesia and Plasmodium genomes revealed that Babesia genomes, which are smaller tha...
Saved in:
Published in | Parasites & vectors Vol. 16; no. 1; p. 193 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
08.06.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Babesia spp. are intraerythrocytic apicomplexans that digest and utilize red blood cells in a similar way to intraerythrocytic Plasmodium spp., but unlike the latter, are not sensitive to artemisinin. A comparison of Babesia and Plasmodium genomes revealed that Babesia genomes, which are smaller than those of Plasmodium, lack numerous genes, and especially haem synthesis-related genes, that are found in the latter. Single-cell sequencing analysis showed that the different treatment groups of Babesia microti with expressed pentose phosphate pathway-related, DNA replication-related, antioxidation-related, glycolysis-related, and glutathione-related genes were not as sensitive to artemether as Plasmodium yoelii 17XNL. In particular, pentose phosphate pathway-related, DNA replication-related, and glutathione-related genes, which were actively expressed in P. yoelii 17XNL, were not actively expressed in B. microti. Supplying iron in vivo can promote the reproduction of B. microti. These results suggest that Babesia spp. lack a similar mechanism to that of malaria parasites through which the haem or iron in hemoglobin is utilized, and that this likely leads to their insensitivity to artemisinin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1756-3305 1756-3305 |
DOI: | 10.1186/s13071-023-05783-4 |