Pyroptotic Neuronal Cell Death Mediated by the AIM2 Inflammasome

The central nervous system (CNS) is an active participant in the innate immune response to infection and injury. In these studies, we show embryonic cortical neurons express a functional, deoxyribonucleic acid (DNA)-responsive, absent in melanoma 2 (AIM2) inflammasome that activates caspase-1. Neuro...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 34; no. 4; pp. 621 - 629
Main Authors Adamczak, Stephanie E, de Rivero Vaccari, Juan Pablo, Dale, Gordon, Brand, Frank J, Nonner, Doris, Bullock, MRoss, Dahl, Gerhard P, Dietrich, W Dalton, Keane, Robert W
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.04.2014
Sage Publications Ltd
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The central nervous system (CNS) is an active participant in the innate immune response to infection and injury. In these studies, we show embryonic cortical neurons express a functional, deoxyribonucleic acid (DNA)-responsive, absent in melanoma 2 (AIM2) inflammasome that activates caspase-1. Neurons undergo pyroptosis, a proinflammatory cell death mechanism characterized by the following: (a) oligomerization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC); (b) caspase-1 dependency; (c) formation of discrete pores in the plasma membrane; and (d) release of the inflammatory cytokine interleukin-1β (IL-1β). Probenecid and Brilliant Blue FCF, inhibitors of the pannexin1 channel, prevent AIM2 inflammasome-mediated cell death, identifying pannexin1 as a cell death effector during pyroptosis and probenecid as a novel pyroptosis inhibitor. Furthermore, we show activation of the AIM2 inflammasome in neurons by cerebrospinal fluid (CSF) from traumatic brain injury (TBI) patients and oligomerization of ASC. These findings suggest neuronal pyroptosis is an important cell death mechanism during CNS infection and injury that may be attenuated by probenecid.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0271-678X
1559-7016
DOI:10.1038/jcbfm.2013.236