Influence of vertical trabeculae on the compressive strength of the human vertebra

Vertebral strength, a key etiologic factor of osteoporotic fracture, may be affected by the relative amount of vertically oriented trabeculae. To better understand this issue, we performed experimental compression testing, high‐resolution micro–computed tomography (µCT), and micro–finite‐element ana...

Full description

Saved in:
Bibliographic Details
Published inJournal of bone and mineral research Vol. 26; no. 2; pp. 263 - 269
Main Authors Fields, Aaron J, Lee, Gideon L, Liu, X Sherry, Jekir, Michael G, Guo, X Edward, Keaveny, Tony M
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2011
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vertebral strength, a key etiologic factor of osteoporotic fracture, may be affected by the relative amount of vertically oriented trabeculae. To better understand this issue, we performed experimental compression testing, high‐resolution micro–computed tomography (µCT), and micro–finite‐element analysis on 16 elderly human thoracic ninth (T9) whole vertebral bodies (ages 77.5 ± 10.1 years). Individual trabeculae segmentation of the µCT images was used to classify the trabeculae by their orientation. We found that the bone volume fraction (BV/TV) of just the vertical trabeculae accounted for substantially more of the observed variation in measured vertebral strength than did the bone volume fraction of all trabeculae (r2 = 0.83 versus 0.59, p < .005). The bone volume fraction of the oblique or horizontal trabeculae was not associated with vertebral strength. Finite‐element analysis indicated that removal of the cortical shell did not appreciably alter these trends; it also revealed that the major load paths occur through parallel columns of vertically oriented bone. Taken together, these findings suggest that variation in vertebral strength across individuals is due primarily to variations in the bone volume fraction of vertical trabeculae. The vertical tissue fraction, a new bone quality parameter that we introduced to reflect these findings, was both a significant predictor of vertebral strength alone (r2 = 0.81) and after accounting for variations in total bone volume fraction in multiple regression (total R2 = 0.93). We conclude that the vertical tissue fraction is a potentially powerful microarchitectural determinant of vertebral strength. © 2011 American Society for Bone and Mineral Research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0884-0431
1523-4681
DOI:10.1002/jbmr.207