基于高时空分辨率遥感数据协同的作物种植结构调查

【目的】充分发掘遥感影像的空间、时间和光谱等特征谱信息,探索地块基元支持下的多源遥感数据作物种植信息自动识别方法,为作物种植结构信息的快速、精细化调查提供借鉴。【方法】以广西扶绥县为研究区,通过对高空间分辨率影像的多尺度分割和对象廓线编辑,提取精细农田地块信息;以地块为基元获取覆盖作物生育期内的时序光谱特征;基于时序光谱及其变化定义与作物长势状况相关的描述参量,形成静态光谱与动态过程特征结合的多维特征空间,结合作物的物候节律特征构建作物种植信息提取模型,实现主要农作物种植结构信息的提取。【结果】依据上述方法绘制出广西扶绥县甘蔗、水稻和其他作物农田及草地、林地、水体、城镇建设用地等的精细地块图,...

Full description

Saved in:
Bibliographic Details
Published in南方农业学报 Vol. 48; no. 3; pp. 552 - 560
Main Author 黄启厅 曾志康 谢国雪 骆剑承 覃泽林 兰宗宝
Format Journal Article
LanguageChinese
Published 中国科学院 遥感与数字地球研究所, 北京 100101 2017
中国科学院大学, 北京 100049%广西农业科学院 农业科技信息研究所,南宁,530007%中国科学院 遥感与数字地球研究所,北京,100101
Subjects
Online AccessGet full text
ISSN2095-1191
DOI10.3969/j:issn.2095-1191.2017.03.028

Cover

More Information
Summary:【目的】充分发掘遥感影像的空间、时间和光谱等特征谱信息,探索地块基元支持下的多源遥感数据作物种植信息自动识别方法,为作物种植结构信息的快速、精细化调查提供借鉴。【方法】以广西扶绥县为研究区,通过对高空间分辨率影像的多尺度分割和对象廓线编辑,提取精细农田地块信息;以地块为基元获取覆盖作物生育期内的时序光谱特征;基于时序光谱及其变化定义与作物长势状况相关的描述参量,形成静态光谱与动态过程特征结合的多维特征空间,结合作物的物候节律特征构建作物种植信息提取模型,实现主要农作物种植结构信息的提取。【结果】依据上述方法绘制出广西扶绥县甘蔗、水稻和其他作物农田及草地、林地、水体、城镇建设用地等的精细地块图,其中,提取广西扶绥县甘蔗和水稻作物的总面积分别为82420.01和6806.67 ha,作物提取的总体分类精度为86.8%,Kappa系数为0.84。【结论】提取的广西扶绥县作物种植结构的成果满足使用精度要求,可为精准农业补贴投放、农业灾害定损等政策制定提供依据,而技术方法对于作物种植结构信息的快速、精细化调查具有借鉴意义。
Bibliography:45-1381/S
Objective】The present study explored information including space, time and spectrum in remote sensing image, explored automatic identification of multi-source remote sensing crop information supported by plot. The research techniques could provide reference for rapid and refined survey of crop planting structure. 【Method】 Fusui county was taken as research region. Firstly, boundary of fine farmland block information were extracted by multi-scale segmentation and object contour editing of high spatial resolution images. Then, time series spectrum features of the covering crop during growth period were obtained by blot. Finally, multidimensional feature space combining static spectrum and dynamic process feature was formed based on temporal spectrum and its changing definition as well as description parameters of crop growth conditions. Crop planting information extraction model was established based on crop phenology rhythm characteristics, which realized extraction of main crop planting structure inf
ISSN:2095-1191
DOI:10.3969/j:issn.2095-1191.2017.03.028