利用照片重建技术生成坡面侵蚀沟三维模型
该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相机拍摄的照片采用尺度不变特征变换(scale-invariant feature transform,SIFT)完成特征点的提取与描述,随机采样一致性算法(random sample and consensus,RANSAC)过滤掉最近邻匹配(nearest neighbor,NN)产生的误匹配点;然后通过SFM方法,迭代求解出相机矩阵和三维点坐标,用光束法平差(bundle adjustment,...
Saved in:
Published in | 农业工程学报 Vol. 31; no. 1; pp. 125 - 132 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
武警工程大学研究生管理大队,西安,710086%武警工程大学信息工程系,西安,710086%西安理工大学水利水电学院,西安,710048
2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相机拍摄的照片采用尺度不变特征变换(scale-invariant feature transform,SIFT)完成特征点的提取与描述,随机采样一致性算法(random sample and consensus,RANSAC)过滤掉最近邻匹配(nearest neighbor,NN)产生的误匹配点;然后通过SFM方法,迭代求解出相机矩阵和三维点坐标,用光束法平差(bundle adjustment,BA)进行非线性优化,确保误差的均匀分布和模型的精确;再使用基于面片的多视图立体视觉算法(patch-based multi-view stereo,PMVS),在局部光度一致性和全局可见性约束下,以SFM生成的稀疏点云为种子面片开始扩散,完成点云稠密重建。将照片快速重建方法获取的点云与地面激光扫描仪(terrestrial laser scanner, TLS)获取的点云及实测数据进行比较,结果表明,照片重建方法生成的点云稠密且能够完整展示侵蚀沟的发育形态,与 TLS点云间的平均距离为0.0034 m,照片重建与三维激光扫描方法对侵蚀量的估算相对误差为8.054%,提取的特征线匹配率达89.592%。研究结果为侵蚀沟监测提供了参考依据。 |
---|---|
Bibliography: | Li Junli, Li Binbing, Liu Fangming, Li Zhanbin (1. Graduate Management Group, Engineering University of CAPF, Xi 'an 710086, China; 2. Department of lnformation Engineering, Engineering University of CAPF, Xi 'an 710086, China; 3. College of grater Resources and Hydro-electric Engineering, Xi 'an University of Technology, Xi 'an 710048, China) 11-2047/S erosion;computer vision;lasers;photo reconstruction;point cloud;scouring experiment Based on Structure from Motion(SFM) and Multi-View Stereo(MVS) techniques, this paper proposed a rapid 3d reconstruction method of slope eroded gully. Firstly, feature points were extracted and described by using the Scale-Invariant Feature Transform(SIFT), and then Random Sample and Consensus(RANSAC) algorithm was applied to filter inaccurate matching points generated by Nearest Neighbor(NN) algorithm; Secondly, in the condition that there were no camera parameters and scenario-based three-dimensional information, SFM was used because it provided a solution to iterate and get cam |
ISSN: | 1002-6819 |
DOI: | 10.3969/j.issn.1002-6819.2015.01.018 |