The role of survival motor neuron protein (SMN) in protein homeostasis

Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research dem...

Full description

Saved in:
Bibliographic Details
Published inCellular and molecular life sciences : CMLS Vol. 75; no. 21; pp. 3877 - 3894
Main Authors Chaytow, Helena, Huang, Yu-Ting, Gillingwater, Thomas H., Faller, Kiterie M. E.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin–proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
ObjectType-Review-3
content type line 23
ISSN:1420-682X
1420-9071
1420-9071
DOI:10.1007/s00018-018-2849-1