MHC class I evolution; from Northern pike to salmonids
Salmonids are of major importance both as farmed and wild animals. With the changing environment comes changes in pathogenic pressures so understanding the immune system of all salmonid species is of essence. Major histocompatibility complex (MHC) genes are key players in the adaptive immune system...
Saved in:
Published in | BMC ecology and evolution Vol. 21; no. 1; pp. 3 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
21.01.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Salmonids are of major importance both as farmed and wild animals. With the changing environment comes changes in pathogenic pressures so understanding the immune system of all salmonid species is of essence. Major histocompatibility complex (MHC) genes are key players in the adaptive immune system signalling infection to responding T-cells populations. Classical MHC class I (MHCI) genes, defined by high polymorphism, broad expression patterns and peptide binding ability, have a key role in inducing immunity. In salmonids, the fourth whole genome duplication that occurred 94 million years ago has provided salmonids with duplicate MHCI regions, while Northern Pike, a basal sister clade to salmonids, represent a species which has not experienced this whole genome duplication.
Comparing the gene organization and evolution of MHC class I gene sequences in Northern pike versus salmonids displays a complex picture of how many of these genes evolved. Regional salmonid Ia and Ib Z lineage gene duplicates are not orthologs to the Northern pike Z lineage sequences. Instead, salmonids have experienced unique gene duplications in both duplicate regions as well as in the Salmo and Oncorhynchus branch. Species-specific gene duplications are even more pronounced for some L lineage genes.
Although both Northern pike as well as salmonids have expanded their U and Z lineage genes, these gene duplications occurred separately in pike and in salmonids. However, the similarity between these duplications suggest the transposable machinery was present in a common ancestor. The salmonid MHCIa and MHCIb regions were formed during the 94 MYA since the split from pike and before the Oncorhynchus and Salmo branch separated. As seen in tetrapods, the non-classical U lineage genes are diversified duplicates of their classical counterpart. One MHCI lineage, the L lineage, experienced massive species-specific gene duplications after Oncorhynchus and Salmo split approximately 25 MYA. Based on what we currently know about L lineage genes, this large variation in number of L lineage genes also signals a large functional diversity in salmonids. |
---|---|
ISSN: | 2730-7182 2730-7182 |
DOI: | 10.1186/s12862-020-01736-y |