A general strategy for the evolution of bond-forming enzymes using yeast display
The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reactio...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 28; pp. 11399 - 11404 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
12.07.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A—catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods. |
---|---|
AbstractList | The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods. [PUBLICATION ABSTRACT] The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods. The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A–catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods. The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods.The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods. |
Author | Chen, Irwin Liu, David R. Dorr, Brent M. |
Author_xml | – sequence: 1 givenname: Irwin surname: Chen fullname: Chen, Irwin – sequence: 2 givenname: Brent M. surname: Dorr fullname: Dorr, Brent M. – sequence: 3 givenname: David R. surname: Liu fullname: Liu, David R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21697512$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFMyeQxQUuaT2O448LUlXxJVWCQ--WNxlvs0rsJU4qhb8eR7tloRJwsqz5zfN7njkjJyEGJOQlsAtgqrzcBZcuABgwIYHpJ2QFzEAhhWEnZMUYV4UWXJySs5S2jDFTafaMnHKQRlXAV-TbFd1gwMF1NI2DG3EzUx8HOt4hxfvYTWMbA42ermNoilzp27ChGH7MPSY6peU2o0sjbdq069z8nDz1rkv44nCek9uPH26vPxc3Xz99ub66KerKqLEwTgul5doBlgplw5GD4wxcU_qm9o0X2EhXCaNr71GthSqN9MDLqjHa8_KcvN_L7qZ1j02NIbvv7G5oezfMNrrW_lkJ7Z3dxHtbQil5pbLA24PAEL9PmEbbt6nGrnMB45SsNgZkBRn_L6mkMkaAzuS7f5KgQWmhq3J5_s0jdBunIeQfy3qK8UoomaHXv4f8le5hfBmo9kA9xJQG9LZuR7eMLGduOwvMLmtilzWxxzXJfZeP-h6k_95BD1aWwpHWluvMlcZk5NUe2aYxDkezyiits9mfw7TUJg |
CitedBy_id | crossref_primary_10_1371_journal_pbio_3000569 crossref_primary_10_1080_17425247_2016_1178235 crossref_primary_10_3390_pharmaceutics13101669 crossref_primary_10_1016_j_jmb_2021_167347 crossref_primary_10_1021_acsomega_2c06139 crossref_primary_10_1016_j_nucmedbio_2017_07_003 crossref_primary_10_1007_s00253_013_5086_4 crossref_primary_10_1038_s41557_020_0528_y crossref_primary_10_3389_fimmu_2022_897873 crossref_primary_10_1002_ange_201708327 crossref_primary_10_1073_pnas_1502609112 crossref_primary_10_1021_acs_bioconjchem_6b00111 crossref_primary_10_1016_j_actbio_2018_07_020 crossref_primary_10_3390_ijms241210143 crossref_primary_10_1016_j_bej_2013_11_018 crossref_primary_10_1002_anie_202201887 crossref_primary_10_1002_pro_5212 crossref_primary_10_1016_j_nbt_2020_05_004 crossref_primary_10_14229_jadc_2023_07_10_002 crossref_primary_10_3390_ijms161024918 crossref_primary_10_1039_D0NR00265H crossref_primary_10_1002_advs_202305605 crossref_primary_10_1038_ncomms11140 crossref_primary_10_3389_fimmu_2024_1480091 crossref_primary_10_1021_acs_bioconjchem_3c00135 crossref_primary_10_1016_j_ymben_2012_04_004 crossref_primary_10_1038_srep25741 crossref_primary_10_1039_C9LC00621D crossref_primary_10_1021_acscatal_1c03753 crossref_primary_10_1016_j_cell_2014_07_050 crossref_primary_10_1016_j_tcm_2012_07_004 crossref_primary_10_1007_s10295_015_1704_8 crossref_primary_10_1016_j_micres_2016_12_002 crossref_primary_10_1016_j_jbc_2024_107727 crossref_primary_10_1021_jacs_5b05694 crossref_primary_10_1021_acs_bioconjchem_6b00137 crossref_primary_10_1002_bit_27002 crossref_primary_10_1016_j_cbpa_2020_07_003 crossref_primary_10_1039_C8PY01228H crossref_primary_10_1038_nprot_2014_177 crossref_primary_10_1021_acsinfecdis_0c00047 crossref_primary_10_1002_chem_201804889 crossref_primary_10_1002_cmmi_1696 crossref_primary_10_1021_acs_bioconjchem_3c00151 crossref_primary_10_1021_jacs_3c08291 crossref_primary_10_1021_jacs_6b03836 crossref_primary_10_1039_C8CC06017G crossref_primary_10_1039_D4SC05090H crossref_primary_10_1016_j_cell_2023_02_008 crossref_primary_10_1038_nmeth_1654 crossref_primary_10_1021_acschembio_6b00169 crossref_primary_10_1038_nchembio_1978 crossref_primary_10_3389_fchem_2021_693097 crossref_primary_10_1002_bit_28621 crossref_primary_10_1038_s41586_022_05333_5 crossref_primary_10_1021_acschembio_8b00653 crossref_primary_10_1021_acs_bioconjchem_0c00456 crossref_primary_10_1021_acsnano_3c12265 crossref_primary_10_1016_j_bmc_2015_03_057 crossref_primary_10_1002_smtd_201800039 crossref_primary_10_1016_j_jbiotec_2014_04_009 crossref_primary_10_1016_j_bmc_2017_06_033 crossref_primary_10_1039_C4CY00347K crossref_primary_10_1021_acschembio_9b01027 crossref_primary_10_1002_bit_27542 crossref_primary_10_1021_acscombsci_7b00153 crossref_primary_10_1016_j_drudis_2022_03_013 crossref_primary_10_1021_acs_bioconjchem_0c00322 crossref_primary_10_1371_journal_pone_0109883 crossref_primary_10_1021_acs_bioconjchem_8b00505 crossref_primary_10_3390_ijms18071507 crossref_primary_10_1016_j_molcel_2021_03_025 crossref_primary_10_3390_ijms21186551 crossref_primary_10_1002_anie_201708327 crossref_primary_10_1002_ange_201307869 crossref_primary_10_1002_anie_202214999 crossref_primary_10_1007_s11095_014_1596_8 crossref_primary_10_1038_s41467_022_32463_1 crossref_primary_10_1038_nrg3927 crossref_primary_10_1007_s00253_012_4175_0 crossref_primary_10_1021_acschembio_5b00315 crossref_primary_10_1158_1535_7163_MCT_13_0358 crossref_primary_10_3389_fimmu_2021_739837 crossref_primary_10_1002_cbic_201700517 crossref_primary_10_1186_s12934_020_01427_9 crossref_primary_10_1016_j_ijbiomac_2022_07_105 crossref_primary_10_1038_s41570_018_0015_9 crossref_primary_10_1021_acs_bioconjchem_2c00411 crossref_primary_10_1021_acscentsci_5b00308 crossref_primary_10_1021_sb3000904 crossref_primary_10_1042_BST20200001 crossref_primary_10_1002_ange_201602353 crossref_primary_10_1021_acs_biomac_1c01280 crossref_primary_10_1021_ja302354v crossref_primary_10_1021_acs_iecr_1c02842 crossref_primary_10_1021_cb300634b crossref_primary_10_1039_C8RA06705H crossref_primary_10_1016_j_bios_2022_114197 crossref_primary_10_1021_acs_bioconjchem_1c00099 crossref_primary_10_1021_acs_orglett_5b03625 crossref_primary_10_1002_ange_202205597 crossref_primary_10_1002_biot_201200022 crossref_primary_10_1002_bit_27329 crossref_primary_10_3390_bacteria1020011 crossref_primary_10_1021_acs_molpharmaceut_9b00434 crossref_primary_10_1515_hsz_2021_0321 crossref_primary_10_1016_j_biortech_2013_08_088 crossref_primary_10_1038_s41467_018_05344_9 crossref_primary_10_3390_molecules29020366 crossref_primary_10_1038_nprot_2013_101 crossref_primary_10_1002_anie_202310910 crossref_primary_10_1021_acs_bioconjchem_6b00638 crossref_primary_10_1073_pnas_2017871118 crossref_primary_10_1038_nmeth_3209 crossref_primary_10_1002_cbic_201402013 crossref_primary_10_1016_j_cclet_2018_05_006 crossref_primary_10_1016_j_ymeth_2014_02_020 crossref_primary_10_1002_anie_201403582 crossref_primary_10_1007_s10875_016_0265_6 crossref_primary_10_1016_j_cbpa_2014_01_006 crossref_primary_10_1038_nprot_2015_026 crossref_primary_10_1038_s41589_019_0227_4 crossref_primary_10_1016_j_bbagen_2019_129419 crossref_primary_10_1038_s41467_020_17443_7 crossref_primary_10_1002_ange_201408529 crossref_primary_10_1002_ange_201701419 crossref_primary_10_1016_j_bios_2013_01_050 crossref_primary_10_1016_j_apsb_2020_11_011 crossref_primary_10_7554_eLife_74282 crossref_primary_10_3390_molecules24142620 crossref_primary_10_1002_biot_202300210 crossref_primary_10_1016_j_cell_2018_10_053 crossref_primary_10_1073_pnas_1701746114 crossref_primary_10_1016_j_omton_2024_200931 crossref_primary_10_1016_j_cclet_2018_05_024 crossref_primary_10_1016_j_aca_2023_341994 crossref_primary_10_1016_j_cbpa_2014_09_020 crossref_primary_10_1021_jacs_8b05200 crossref_primary_10_1002_btpr_3146 crossref_primary_10_1016_j_sbi_2017_12_010 crossref_primary_10_1002_ange_202201887 crossref_primary_10_1021_jacs_8b10286 crossref_primary_10_1002_chem_202401961 crossref_primary_10_1016_j_abb_2012_03_009 crossref_primary_10_1016_j_bbrc_2016_08_175 crossref_primary_10_3390_ijms23158707 crossref_primary_10_1021_cbmi_4c00067 crossref_primary_10_1007_s10858_016_0019_z crossref_primary_10_1002_smll_202101066 crossref_primary_10_1021_bi400268m crossref_primary_10_1088_1361_6463_aae0e2 crossref_primary_10_1002_anie_202315286 crossref_primary_10_1074_jbc_RA119_012039 crossref_primary_10_1021_ie503060a crossref_primary_10_1021_acs_bioconjchem_5b00558 crossref_primary_10_1146_annurev_cellbio_100617_062527 crossref_primary_10_1002_bit_25993 crossref_primary_10_1002_bit_25637 crossref_primary_10_1002_biot_201600696 crossref_primary_10_1016_j_addr_2022_114460 crossref_primary_10_1002_eng2_12040 crossref_primary_10_1021_acsmacrolett_0c00109 crossref_primary_10_1073_pnas_1409861111 crossref_primary_10_1038_s41467_023_39233_7 crossref_primary_10_1021_acs_bioconjchem_7b00478 crossref_primary_10_1039_D1OB00411E crossref_primary_10_1093_nar_gkw710 crossref_primary_10_1017_S0033583517000051 crossref_primary_10_1073_pnas_2101596118 crossref_primary_10_1021_acs_bioconjchem_9b00568 crossref_primary_10_1021_acs_bioconjchem_7b00592 crossref_primary_10_1002_cbic_202400190 crossref_primary_10_1071_CH16589 crossref_primary_10_1039_D4CB00024B crossref_primary_10_3389_fimmu_2023_1264179 crossref_primary_10_1016_j_pep_2019_04_004 crossref_primary_10_1021_jacs_7b13237 crossref_primary_10_1371_journal_pone_0154607 crossref_primary_10_1039_C8CC02760A crossref_primary_10_1093_protein_gzaa018 crossref_primary_10_3389_fimmu_2021_799910 crossref_primary_10_1021_acs_biochem_7b00108 crossref_primary_10_1002_anie_201707623 crossref_primary_10_1038_s41570_024_00591_5 crossref_primary_10_1126_sciadv_ade0073 crossref_primary_10_1007_s10858_015_9981_0 crossref_primary_10_1016_j_ymeth_2018_07_013 crossref_primary_10_1021_acs_bioconjchem_9b00534 crossref_primary_10_1158_1535_7163_MCT_16_0688 crossref_primary_10_7554_eLife_88492 crossref_primary_10_1021_acs_analchem_1c02322 crossref_primary_10_1002_pro_4266 crossref_primary_10_1016_j_sbi_2016_05_021 crossref_primary_10_2967_jnumed_116_186007 crossref_primary_10_3389_fchem_2022_958272 crossref_primary_10_1016_j_molcel_2014_02_003 crossref_primary_10_1021_jacs_6b05413 crossref_primary_10_1002_anie_201404616 crossref_primary_10_1039_C8CS00537K crossref_primary_10_1002_anie_202310862 crossref_primary_10_1002_chem_202002740 crossref_primary_10_3390_molecules26185599 crossref_primary_10_1002_smll_201602267 crossref_primary_10_1021_acs_bioconjchem_9b00548 crossref_primary_10_1002_adma_202209904 crossref_primary_10_1063_5_0037793 crossref_primary_10_1038_s41557_024_01520_1 crossref_primary_10_1002_chem_201803485 crossref_primary_10_1038_s42004_023_00841_5 crossref_primary_10_1016_j_bbamem_2022_183884 crossref_primary_10_1128_AEM_00054_19 crossref_primary_10_1007_s00253_014_6048_1 crossref_primary_10_1002_psc_3657 crossref_primary_10_1093_nar_gkz1163 crossref_primary_10_1021_jacs_8b00172 crossref_primary_10_1080_07328303_2019_1609021 crossref_primary_10_1016_j_biortech_2017_05_031 crossref_primary_10_1016_j_bios_2021_113003 crossref_primary_10_7554_eLife_86090 crossref_primary_10_1016_j_bbrc_2017_03_016 crossref_primary_10_1038_s41586_019_1355_4 crossref_primary_10_1039_c3ob40633d crossref_primary_10_1016_j_copbio_2017_05_012 crossref_primary_10_3390_microorganisms12010179 crossref_primary_10_1016_j_sna_2022_114114 crossref_primary_10_1002_cpps_38 crossref_primary_10_1016_j_ab_2017_01_008 crossref_primary_10_1155_2016_4131324 crossref_primary_10_1021_acschembio_4c00149 crossref_primary_10_1002_anie_201511894 crossref_primary_10_1002_bip_23390 crossref_primary_10_1074_mcp_RA118_001043 crossref_primary_10_1021_acs_chemrev_1c00260 crossref_primary_10_1038_s41467_021_26812_9 crossref_primary_10_12688_f1000research_9002_1 crossref_primary_10_1021_acs_analchem_7b04756 crossref_primary_10_1002_biof_2001 crossref_primary_10_1021_acs_orglett_3c01657 crossref_primary_10_1039_D1GC04387K crossref_primary_10_1016_j_celrep_2023_113451 crossref_primary_10_1016_j_molcel_2023_11_027 crossref_primary_10_1002_ange_202109032 crossref_primary_10_1039_C8CS00981C crossref_primary_10_1002_ange_202315286 crossref_primary_10_1016_j_xcrp_2023_101638 crossref_primary_10_1021_acschembio_3c00728 crossref_primary_10_1021_acs_langmuir_0c02575 crossref_primary_10_1021_acs_bioconjchem_9b00744 crossref_primary_10_1021_acs_chemrev_9b00372 crossref_primary_10_1002_ange_201403582 crossref_primary_10_1093_protein_gzt039 crossref_primary_10_1073_pnas_1411179111 crossref_primary_10_1126_scitranslmed_abq0991 crossref_primary_10_1002_anbr_202100142 crossref_primary_10_1016_j_ijbiomac_2023_127657 crossref_primary_10_1021_acsomega_4c05828 crossref_primary_10_1002_chem_201402072 crossref_primary_10_5936_csbj_201402001 crossref_primary_10_1002_anie_202205597 crossref_primary_10_1002_adhm_201300110 crossref_primary_10_1002_anie_202109032 crossref_primary_10_1002_cbic_202000745 crossref_primary_10_3390_molecules23010192 crossref_primary_10_1002_cbic_201700174 crossref_primary_10_1002_cbic_202000747 crossref_primary_10_1038_s41564_021_00877_0 crossref_primary_10_1073_pnas_1909653116 crossref_primary_10_1038_s41589_021_00774_x crossref_primary_10_1021_acsomega_4c00489 crossref_primary_10_1002_cbic_201402290 crossref_primary_10_1021_acsomega_7b00478 crossref_primary_10_1038_s41467_023_43753_7 crossref_primary_10_1038_srep31899 crossref_primary_10_1038_s41556_020_0473_4 crossref_primary_10_1016_j_biotechadv_2015_06_002 crossref_primary_10_1016_j_pep_2017_03_010 crossref_primary_10_1371_journal_pone_0252558 crossref_primary_10_1021_acsami_9b05531 crossref_primary_10_1126_sciadv_aaw1822 crossref_primary_10_3390_toxins16040194 crossref_primary_10_1039_C7BM00691H crossref_primary_10_3389_fimmu_2020_560244 crossref_primary_10_3390_microorganisms12071438 crossref_primary_10_1371_journal_pone_0184271 crossref_primary_10_1038_s41565_023_01536_7 crossref_primary_10_3390_cryst12081041 crossref_primary_10_1016_j_bmc_2013_03_039 crossref_primary_10_1084_jem_20161950 crossref_primary_10_3390_ijms231911537 crossref_primary_10_1016_j_csbj_2021_12_018 crossref_primary_10_1021_acssynbio_9b00407 crossref_primary_10_13070_mm_en_9_2795 crossref_primary_10_1016_j_pnmrs_2019_08_001 crossref_primary_10_1002_chem_201800812 crossref_primary_10_1021_jacs_5b11014 crossref_primary_10_1002_ange_201511894 crossref_primary_10_1039_C4SC02078B crossref_primary_10_1016_j_biotechadv_2023_108108 crossref_primary_10_1021_jacs_4c12585 crossref_primary_10_1016_j_biomaterials_2021_121011 crossref_primary_10_1038_s41594_022_00815_6 crossref_primary_10_1039_D4SC01992J crossref_primary_10_1002_mabi_202400316 crossref_primary_10_1042_BCJ20180885 crossref_primary_10_1002_ange_202214999 crossref_primary_10_1002_anie_201307869 crossref_primary_10_3389_fmolb_2022_835302 crossref_primary_10_1002_ange_202310910 crossref_primary_10_1002_anie_202209945 crossref_primary_10_1021_acs_biomac_2c01158 crossref_primary_10_1002_anie_201602353 crossref_primary_10_1016_j_febslet_2014_10_020 crossref_primary_10_1016_j_molcel_2019_10_006 crossref_primary_10_1021_acs_chemrev_9b00450 crossref_primary_10_1016_j_chembiol_2012_06_014 crossref_primary_10_1002_cpz1_311 crossref_primary_10_1111_febs_14766 crossref_primary_10_3389_fbioe_2023_1162720 crossref_primary_10_1002_bit_25939 crossref_primary_10_1016_j_colsurfb_2015_02_044 crossref_primary_10_1021_bc500230r crossref_primary_10_1038_s41563_021_01136_7 crossref_primary_10_1002_ange_201404616 crossref_primary_10_1002_psc_2600 crossref_primary_10_1002_ange_202209945 crossref_primary_10_1039_D2CB00231K crossref_primary_10_1016_j_copbio_2016_01_003 crossref_primary_10_1016_j_cell_2015_03_012 crossref_primary_10_1039_D3CB00229B crossref_primary_10_1126_scisignal_abc9012 crossref_primary_10_1002_pro_2467 crossref_primary_10_1074_jbc_RA120_013852 crossref_primary_10_1016_j_biomaterials_2017_03_030 crossref_primary_10_1039_D0CS01148G crossref_primary_10_1016_j_chom_2021_01_006 crossref_primary_10_1084_jem_20131603 crossref_primary_10_1039_D1CC01348C crossref_primary_10_1038_srep11944 crossref_primary_10_1002_biot_201500012 crossref_primary_10_1016_j_cell_2018_09_039 crossref_primary_10_1016_j_celrep_2022_110531 crossref_primary_10_3389_fbioe_2021_794742 crossref_primary_10_1021_acs_bioconjchem_1c00442 crossref_primary_10_1007_s00253_014_5704_9 crossref_primary_10_1038_nature25442 crossref_primary_10_1021_acs_chemrev_6b00832 crossref_primary_10_1021_acs_biomac_5b00549 crossref_primary_10_1002_psc_2943 crossref_primary_10_1038_nmeth_4079 crossref_primary_10_7554_eLife_56945 crossref_primary_10_1021_ja205630g crossref_primary_10_1016_j_jconrel_2019_11_018 crossref_primary_10_1016_j_molcel_2023_05_034 crossref_primary_10_1016_j_jbc_2025_108382 crossref_primary_10_1186_s12934_024_02386_1 crossref_primary_10_1021_acschembio_4c00443 crossref_primary_10_1016_j_fgb_2013_11_006 crossref_primary_10_1002_cplu_201900687 crossref_primary_10_1016_j_copbio_2013_03_001 crossref_primary_10_1016_j_tibs_2024_04_003 crossref_primary_10_1021_acs_bioconjchem_4c00264 crossref_primary_10_1002_ange_202310862 crossref_primary_10_1002_anie_201701419 crossref_primary_10_1038_s41598_021_90593_w crossref_primary_10_1038_s41598_017_06856_y crossref_primary_10_1074_jbc_M116_764225 crossref_primary_10_1016_j_cell_2019_08_037 crossref_primary_10_1146_annurev_bioeng_111215_024421 crossref_primary_10_3389_fchem_2019_00238 crossref_primary_10_1021_jacs_4c15674 crossref_primary_10_1016_j_celrep_2022_110841 crossref_primary_10_1073_pnas_2206513119 crossref_primary_10_1002_bit_27024 crossref_primary_10_1016_j_sbi_2012_03_010 crossref_primary_10_1002_bit_28110 crossref_primary_10_1016_j_actbio_2019_06_019 crossref_primary_10_1021_cb500462t crossref_primary_10_1016_j_celrep_2019_08_053 crossref_primary_10_1039_C8CC04495C crossref_primary_10_1016_j_sbi_2018_03_014 crossref_primary_10_1016_j_jmb_2018_09_003 crossref_primary_10_3390_antib13010018 crossref_primary_10_1021_acsomega_4c09900 crossref_primary_10_1021_jacs_6b12637 crossref_primary_10_1002_psc_2980 crossref_primary_10_1038_s41467_024_45541_3 crossref_primary_10_1002_adma_202209476 crossref_primary_10_1002_anie_201408529 crossref_primary_10_1111_febs_13288 crossref_primary_10_1039_D1OB00608H crossref_primary_10_1146_annurev_biochem_062917_012034 crossref_primary_10_1126_sciadv_abd3916 crossref_primary_10_1074_jbc_M117_782037 crossref_primary_10_1021_acs_analchem_8b03716 crossref_primary_10_1111_1567_1364_12212 crossref_primary_10_1021_acscatal_4c00487 crossref_primary_10_1186_s40580_017_0103_4 crossref_primary_10_1038_s41589_020_00706_1 crossref_primary_10_1371_journal_pone_0131177 crossref_primary_10_1021_jacsau_2c00617 crossref_primary_10_1021_acs_chemrev_9b00738 crossref_primary_10_1186_s12934_023_02134_x crossref_primary_10_3390_antib13020037 crossref_primary_10_1038_nsmb_3012 crossref_primary_10_1038_nsmb_3375 crossref_primary_10_1016_j_jbc_2021_100981 crossref_primary_10_1002_ange_201707623 crossref_primary_10_1186_s12934_018_0881_3 crossref_primary_10_1038_nbt_3563 |
Cites_doi | 10.1038/nbt0697-553 10.1016/j.jmb.2009.02.010 10.1093/nar/gni116 10.1038/nbt0706-769 10.1074/jbc.M800974200 10.1021/ja046238v 10.1016/j.sbi.2007.08.012 10.1021/cb700054k 10.1038/nature06032 10.1016/j.sbi.2005.06.004 10.1038/nature06879 10.1002/cbic.200900384 10.1021/ja047749k 10.1002/cbic.200800724 10.1021/ja053322h 10.1038/80267 10.1073/pnas.0504733102 10.1016/j.tibtech.2003.09.001 10.1073/pnas.0809851105 10.1016/j.cbpa.2008.01.027 10.1126/science.1190239 10.1006/jmbi.1996.0049 10.1038/nchembio.2007.31 10.1016/S0958-1669(03)00099-5 10.1039/b616252e 10.1074/jbc.M109.022624 10.1038/nchembio.80 10.1073/pnas.0507705102 10.1016/S0958-1669(03)00092-2 10.1073/pnas.0914067107 10.1021/bi700448e 10.1073/pnas.0910781107 10.1016/j.ab.2003.10.023 10.1038/nbt1341 10.1126/science.1188934 10.1126/science.1152692 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 12, 2011 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 12, 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1101046108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11404 |
ExternalDocumentID | PMC3136257 2399999521 21697512 10_1073_pnas_1101046108 108_28_11399 27978812 |
Genre | Validation Studies Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM065400 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c597t-9a84786ba1e37e6d2e21a201ad3fdcfdf4ed6a5498cffe7b47396f1235d98f23 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:12:10 EDT 2025 Fri Jul 11 16:27:43 EDT 2025 Fri Jul 11 02:44:54 EDT 2025 Fri Jul 11 10:53:46 EDT 2025 Sat Aug 23 13:29:22 EDT 2025 Mon Jul 21 05:59:27 EDT 2025 Tue Jul 01 00:47:12 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Wed Nov 11 00:29:37 EST 2020 Thu May 29 08:40:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c597t-9a84786ba1e37e6d2e21a201ad3fdcfdf4ed6a5498cffe7b47396f1235d98f23 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 ObjectType-Article-2 Edited by David Baker, University of Washington, Seattle, WA, and approved May 24, 2011 (received for review January 22, 2011) Author contributions: I.C., B.M.D., and D.R.L. designed research; I.C. and B.M.D. performed research; I.C. and B.M.D. contributed new reagents/analytic tools; I.C., B.M.D., and D.R.L. analyzed data; and I.C., B.M.D., and D.R.L. wrote the paper. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3136257 |
PMID | 21697512 |
PQID | 877025476 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_899165131 proquest_miscellaneous_876799418 proquest_miscellaneous_1817848537 pubmed_primary_21697512 crossref_citationtrail_10_1073_pnas_1101046108 crossref_primary_10_1073_pnas_1101046108 pnas_primary_108_28_11399 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3136257 proquest_journals_877025476 jstor_primary_27978812 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-12 |
PublicationDateYYYYMMDD | 2011-07-12 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 18284924 - Curr Opin Chem Biol. 2008 Apr;12(2):151-8 17891153 - Nat Chem Biol. 2007 Nov;3(11):707-8 15548001 - J Am Chem Soc. 2004 Nov 24;126(46):15051-9 20558668 - Science. 2010 Jul 16;329(5989):305-9 19592495 - J Biol Chem. 2009 Sep 4;284(36):24465-77 17465518 - ACS Chem Biol. 2007 May 22;2(5):337-46 18323453 - Science. 2008 Mar 7;319(5868):1387-91 18354394 - Nature. 2008 May 8;453(7192):190-5 20534555 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10914-9 20647463 - Science. 2010 Jul 16;329(5989):309-13 18391948 - Nat Chem Biol. 2008 May;4(5):290-4 11017045 - Nat Biotechnol. 2000 Oct;18(10):1071-4 16144377 - J Am Chem Soc. 2005 Sep 14;127(36):12470-1 14769334 - Anal Biochem. 2004 Mar 1;326(1):42-8 16446453 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1693-8 16841057 - Nat Biotechnol. 2006 Jul;24(7):769-76 17873865 - Nat Biotechnol. 2007 Oct;25(10):1145-7 9181578 - Nat Biotechnol. 1997 Jun;15(6):553-7 18375951 - J Biol Chem. 2008 May 23;283(21):14762-71 12943855 - Curr Opin Biotechnol. 2003 Aug;14(4):438-43 17870469 - Curr Opin Struct Biol. 2007 Aug;17(4):467-73 19004779 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17694-9 19199328 - Chembiochem. 2009 Mar 23;10(5):787-98 19780076 - Chembiochem. 2009 Nov 23;10(17):2704-15 8568899 - J Mol Biol. 1996 Feb 2;255(4):589-603 17518446 - Biochemistry. 2007 Jun 19;46(24):7269-78 16236721 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15815-20 20142500 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9 17700701 - Nature. 2007 Aug 16;448(7155):828-31 14573359 - Trends Biotechnol. 2003 Nov;21(11):474-8 16006119 - Curr Opin Struct Biol. 2005 Aug;15(4):447-52 16061932 - Nucleic Acids Res. 2005;33(13):e117 17476389 - Chem Commun (Camb). 2007 May 14;(18):1773-88 12943856 - Curr Opin Biotechnol. 2003 Aug;14(4):444-50 15212504 - J Am Chem Soc. 2004 Jun 30;126(25):7754-5 19340948 - J Mol Biol. 2009 Apr 10;387(4):883-98 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1038/nbt0697-553 – ident: e_1_3_3_33_2 doi: 10.1016/j.jmb.2009.02.010 – ident: e_1_3_3_25_2 doi: 10.1093/nar/gni116 – ident: e_1_3_3_5_2 doi: 10.1038/nbt0706-769 – ident: e_1_3_3_26_2 doi: 10.1074/jbc.M800974200 – ident: e_1_3_3_14_2 doi: 10.1021/ja046238v – ident: e_1_3_3_18_2 doi: 10.1016/j.sbi.2007.08.012 – ident: e_1_3_3_22_2 doi: 10.1021/cb700054k – ident: e_1_3_3_16_2 doi: 10.1038/nature06032 – ident: e_1_3_3_9_2 doi: 10.1016/j.sbi.2005.06.004 – ident: e_1_3_3_35_2 doi: 10.1038/nature06879 – ident: e_1_3_3_32_2 doi: 10.1002/cbic.200900384 – ident: e_1_3_3_21_2 doi: 10.1021/ja047749k – ident: e_1_3_3_23_2 doi: 10.1002/cbic.200800724 – ident: e_1_3_3_15_2 doi: 10.1021/ja053322h – ident: e_1_3_3_17_2 doi: 10.1038/80267 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.0504733102 – ident: e_1_3_3_10_2 doi: 10.1016/j.tibtech.2003.09.001 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.0809851105 – ident: e_1_3_3_8_2 doi: 10.1016/j.cbpa.2008.01.027 – ident: e_1_3_3_36_2 doi: 10.1126/science.1190239 – ident: e_1_3_3_24_2 doi: 10.1006/jmbi.1996.0049 – ident: e_1_3_3_4_2 doi: 10.1038/nchembio.2007.31 – ident: e_1_3_3_7_2 doi: 10.1016/S0958-1669(03)00099-5 – ident: e_1_3_3_13_2 doi: 10.1039/b616252e – ident: e_1_3_3_29_2 doi: 10.1074/jbc.M109.022624 – ident: e_1_3_3_20_2 doi: 10.1038/nchembio.80 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.0507705102 – ident: e_1_3_3_6_2 doi: 10.1016/S0958-1669(03)00092-2 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.0914067107 – ident: e_1_3_3_27_2 doi: 10.1021/bi700448e – ident: e_1_3_3_30_2 doi: 10.1073/pnas.0910781107 – ident: e_1_3_3_28_2 doi: 10.1016/j.ab.2003.10.023 – ident: e_1_3_3_11_2 doi: 10.1038/nbt1341 – ident: e_1_3_3_1_2 doi: 10.1126/science.1188934 – ident: e_1_3_3_34_2 doi: 10.1126/science.1152692 – reference: 19199328 - Chembiochem. 2009 Mar 23;10(5):787-98 – reference: 12943856 - Curr Opin Biotechnol. 2003 Aug;14(4):444-50 – reference: 20142500 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9 – reference: 14573359 - Trends Biotechnol. 2003 Nov;21(11):474-8 – reference: 15212504 - J Am Chem Soc. 2004 Jun 30;126(25):7754-5 – reference: 19780076 - Chembiochem. 2009 Nov 23;10(17):2704-15 – reference: 16446453 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1693-8 – reference: 17476389 - Chem Commun (Camb). 2007 May 14;(18):1773-88 – reference: 17700701 - Nature. 2007 Aug 16;448(7155):828-31 – reference: 17891153 - Nat Chem Biol. 2007 Nov;3(11):707-8 – reference: 16006119 - Curr Opin Struct Biol. 2005 Aug;15(4):447-52 – reference: 8568899 - J Mol Biol. 1996 Feb 2;255(4):589-603 – reference: 17465518 - ACS Chem Biol. 2007 May 22;2(5):337-46 – reference: 17870469 - Curr Opin Struct Biol. 2007 Aug;17(4):467-73 – reference: 14769334 - Anal Biochem. 2004 Mar 1;326(1):42-8 – reference: 20534555 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10914-9 – reference: 16061932 - Nucleic Acids Res. 2005;33(13):e117 – reference: 18391948 - Nat Chem Biol. 2008 May;4(5):290-4 – reference: 19592495 - J Biol Chem. 2009 Sep 4;284(36):24465-77 – reference: 18284924 - Curr Opin Chem Biol. 2008 Apr;12(2):151-8 – reference: 18375951 - J Biol Chem. 2008 May 23;283(21):14762-71 – reference: 12943855 - Curr Opin Biotechnol. 2003 Aug;14(4):438-43 – reference: 15548001 - J Am Chem Soc. 2004 Nov 24;126(46):15051-9 – reference: 9181578 - Nat Biotechnol. 1997 Jun;15(6):553-7 – reference: 16841057 - Nat Biotechnol. 2006 Jul;24(7):769-76 – reference: 19004779 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17694-9 – reference: 19340948 - J Mol Biol. 2009 Apr 10;387(4):883-98 – reference: 16236721 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15815-20 – reference: 17518446 - Biochemistry. 2007 Jun 19;46(24):7269-78 – reference: 18354394 - Nature. 2008 May 8;453(7192):190-5 – reference: 20558668 - Science. 2010 Jul 16;329(5989):305-9 – reference: 18323453 - Science. 2008 Mar 7;319(5868):1387-91 – reference: 20647463 - Science. 2010 Jul 16;329(5989):309-13 – reference: 16144377 - J Am Chem Soc. 2005 Sep 14;127(36):12470-1 – reference: 11017045 - Nat Biotechnol. 2000 Oct;18(10):1071-4 – reference: 17873865 - Nat Biotechnol. 2007 Oct;25(10):1145-7 |
SSID | ssj0009580 |
Score | 2.5447023 |
Snippet | The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11399 |
SubjectTerms | Amino Acid Sequence Aminoacyltransferases - chemistry Aminoacyltransferases - genetics Aminoacyltransferases - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Base Sequence Biological Sciences Catalysis Catalysts catalytic activity CD154 antigen chemical bonding Chemical reactions Cysteine Endopeptidases - chemistry Cysteine Endopeptidases - genetics Cysteine Endopeptidases - metabolism directed evolution Directed molecular evolution Directed Molecular Evolution - methods DNA, Recombinant - genetics Enzyme substrates Enzymes Enzymes - chemistry Enzymes - genetics Enzymes - metabolism Escherichia coli - enzymology Escherichia coli - genetics Evolution Flow cytometry Fluorescence Gene Library Genetic mutation HeLa Cells Humans Kinetics Libraries Models, Molecular Molecular Sequence Data Molecules Mutant Proteins - chemistry Mutant Proteins - genetics Mutant Proteins - metabolism Peptide Library Protein Engineering proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics screening sortase sortase A Staphylococcus aureus Staphylococcus aureus - enzymology Staphylococcus aureus - genetics Substrate Specificity Yeast Yeasts |
Title | A general strategy for the evolution of bond-forming enzymes using yeast display |
URI | https://www.jstor.org/stable/27978812 http://www.pnas.org/content/108/28/11399.abstract https://www.ncbi.nlm.nih.gov/pubmed/21697512 https://www.proquest.com/docview/877025476 https://www.proquest.com/docview/1817848537 https://www.proquest.com/docview/876799418 https://www.proquest.com/docview/899165131 https://pubmed.ncbi.nlm.nih.gov/PMC3136257 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDDIBshIPAxVKXXsxM5jNW0qqJQ-dFLfoiS2xaQpndYWqfvruXOcpJ06fr1EUXxJrNwX-3y--46Qj6rgwlqRhoKrJBRxrMJcYtiOgfmmYHFZO_S_TZLRpfg6j-dduVSXXbIq-uXd3ryS_9EqXAO9YpbsP2i2fShcgHPQLxxBw3D8Kx0PsQAyOpV6y5pkdtNGDZqf_s1oDRaLSodonaJfwFR3G2RoWjsvwQZr9-A2zc11vrPDO21ntmUTRzBpHIfDLg3Fjw3LXtibTrqixmc-6eMLEgy3xvLitvYNOEao1uUzvlq30fU-flF3flUZsi3PJBKMhomoa3_2zZ5rzXA7UFu48pnh9ejJwBxN947rMBBhMeIqX2LeAnMs8aqbwppt-8n37OJyPM5m5_PZY_IkgqWDC_YcbRMxq5qhwnetoXuS_PO9x-9YKnWwKjLggtC-1cj9oNotK2X2nDzzyws6rLFySB6Z6gU5bJRETz3L-KeXZDqkHjy0AQ8FiFBQNG3BQxeWboOHevBQBx7qwEM9eF6R2cX57GwU-vIaYQmryFWY5mCZqKTImeHSJDoyEctBtbnmVpdWW2F0ksciVaW1RhZC8jSxmFutU2UjfkQOqkVl3hCqikinotR8oGNRwpRghB3wiBshc2gYBKTffMms9NTzWAHlOnMhEJJn-FWz7tMH5LS94aZmXXlY9MipppWLZIolEqKABE60u19lkcocxgJy0igw8__zMlNSIjWETALyoW2FwRZ30PLKLNbwWsWkEmDhyoDQB2TAvJBpKpj6jQguymLGWUBe16Dpes-SVMbYe7kDp1YA6eB3W6qrH44WnjMwRmN5_OeenZCn3S_8lhysbtfmHdjWq-K9-1l-AXkOzl0 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+strategy+for+the+evolution+of+bond-forming+enzymes+using+yeast+display&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chen%2C+Irwin&rft.au=Dorr%2C+Brent+M&rft.au=Liu%2C+David+R&rft.date=2011-07-12&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=28&rft.spage=11399&rft_id=info:doi/10.1073%2Fpnas.1101046108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F28.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F28.cover.gif |