A general strategy for the evolution of bond-forming enzymes using yeast display

The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reactio...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 28; pp. 11399 - 11404
Main Authors Chen, Irwin, Dorr, Brent M., Liu, David R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.07.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A—catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods.
AbstractList The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods. [PUBLICATION ABSTRACT]
The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods.
The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A–catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods.
The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods.The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A-catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods.
Author Chen, Irwin
Liu, David R.
Dorr, Brent M.
Author_xml – sequence: 1
  givenname: Irwin
  surname: Chen
  fullname: Chen, Irwin
– sequence: 2
  givenname: Brent M.
  surname: Dorr
  fullname: Dorr, Brent M.
– sequence: 3
  givenname: David R.
  surname: Liu
  fullname: Liu, David R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21697512$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFMyeQxQUuaT2O448LUlXxJVWCQ--WNxlvs0rsJU4qhb8eR7tloRJwsqz5zfN7njkjJyEGJOQlsAtgqrzcBZcuABgwIYHpJ2QFzEAhhWEnZMUYV4UWXJySs5S2jDFTafaMnHKQRlXAV-TbFd1gwMF1NI2DG3EzUx8HOt4hxfvYTWMbA42ermNoilzp27ChGH7MPSY6peU2o0sjbdq069z8nDz1rkv44nCek9uPH26vPxc3Xz99ub66KerKqLEwTgul5doBlgplw5GD4wxcU_qm9o0X2EhXCaNr71GthSqN9MDLqjHa8_KcvN_L7qZ1j02NIbvv7G5oezfMNrrW_lkJ7Z3dxHtbQil5pbLA24PAEL9PmEbbt6nGrnMB45SsNgZkBRn_L6mkMkaAzuS7f5KgQWmhq3J5_s0jdBunIeQfy3qK8UoomaHXv4f8le5hfBmo9kA9xJQG9LZuR7eMLGduOwvMLmtilzWxxzXJfZeP-h6k_95BD1aWwpHWluvMlcZk5NUe2aYxDkezyiits9mfw7TUJg
CitedBy_id crossref_primary_10_1371_journal_pbio_3000569
crossref_primary_10_1080_17425247_2016_1178235
crossref_primary_10_3390_pharmaceutics13101669
crossref_primary_10_1016_j_jmb_2021_167347
crossref_primary_10_1021_acsomega_2c06139
crossref_primary_10_1016_j_nucmedbio_2017_07_003
crossref_primary_10_1007_s00253_013_5086_4
crossref_primary_10_1038_s41557_020_0528_y
crossref_primary_10_3389_fimmu_2022_897873
crossref_primary_10_1002_ange_201708327
crossref_primary_10_1073_pnas_1502609112
crossref_primary_10_1021_acs_bioconjchem_6b00111
crossref_primary_10_1016_j_actbio_2018_07_020
crossref_primary_10_3390_ijms241210143
crossref_primary_10_1016_j_bej_2013_11_018
crossref_primary_10_1002_anie_202201887
crossref_primary_10_1002_pro_5212
crossref_primary_10_1016_j_nbt_2020_05_004
crossref_primary_10_14229_jadc_2023_07_10_002
crossref_primary_10_3390_ijms161024918
crossref_primary_10_1039_D0NR00265H
crossref_primary_10_1002_advs_202305605
crossref_primary_10_1038_ncomms11140
crossref_primary_10_3389_fimmu_2024_1480091
crossref_primary_10_1021_acs_bioconjchem_3c00135
crossref_primary_10_1016_j_ymben_2012_04_004
crossref_primary_10_1038_srep25741
crossref_primary_10_1039_C9LC00621D
crossref_primary_10_1021_acscatal_1c03753
crossref_primary_10_1016_j_cell_2014_07_050
crossref_primary_10_1016_j_tcm_2012_07_004
crossref_primary_10_1007_s10295_015_1704_8
crossref_primary_10_1016_j_micres_2016_12_002
crossref_primary_10_1016_j_jbc_2024_107727
crossref_primary_10_1021_jacs_5b05694
crossref_primary_10_1021_acs_bioconjchem_6b00137
crossref_primary_10_1002_bit_27002
crossref_primary_10_1016_j_cbpa_2020_07_003
crossref_primary_10_1039_C8PY01228H
crossref_primary_10_1038_nprot_2014_177
crossref_primary_10_1021_acsinfecdis_0c00047
crossref_primary_10_1002_chem_201804889
crossref_primary_10_1002_cmmi_1696
crossref_primary_10_1021_acs_bioconjchem_3c00151
crossref_primary_10_1021_jacs_3c08291
crossref_primary_10_1021_jacs_6b03836
crossref_primary_10_1039_C8CC06017G
crossref_primary_10_1039_D4SC05090H
crossref_primary_10_1016_j_cell_2023_02_008
crossref_primary_10_1038_nmeth_1654
crossref_primary_10_1021_acschembio_6b00169
crossref_primary_10_1038_nchembio_1978
crossref_primary_10_3389_fchem_2021_693097
crossref_primary_10_1002_bit_28621
crossref_primary_10_1038_s41586_022_05333_5
crossref_primary_10_1021_acschembio_8b00653
crossref_primary_10_1021_acs_bioconjchem_0c00456
crossref_primary_10_1021_acsnano_3c12265
crossref_primary_10_1016_j_bmc_2015_03_057
crossref_primary_10_1002_smtd_201800039
crossref_primary_10_1016_j_jbiotec_2014_04_009
crossref_primary_10_1016_j_bmc_2017_06_033
crossref_primary_10_1039_C4CY00347K
crossref_primary_10_1021_acschembio_9b01027
crossref_primary_10_1002_bit_27542
crossref_primary_10_1021_acscombsci_7b00153
crossref_primary_10_1016_j_drudis_2022_03_013
crossref_primary_10_1021_acs_bioconjchem_0c00322
crossref_primary_10_1371_journal_pone_0109883
crossref_primary_10_1021_acs_bioconjchem_8b00505
crossref_primary_10_3390_ijms18071507
crossref_primary_10_1016_j_molcel_2021_03_025
crossref_primary_10_3390_ijms21186551
crossref_primary_10_1002_anie_201708327
crossref_primary_10_1002_ange_201307869
crossref_primary_10_1002_anie_202214999
crossref_primary_10_1007_s11095_014_1596_8
crossref_primary_10_1038_s41467_022_32463_1
crossref_primary_10_1038_nrg3927
crossref_primary_10_1007_s00253_012_4175_0
crossref_primary_10_1021_acschembio_5b00315
crossref_primary_10_1158_1535_7163_MCT_13_0358
crossref_primary_10_3389_fimmu_2021_739837
crossref_primary_10_1002_cbic_201700517
crossref_primary_10_1186_s12934_020_01427_9
crossref_primary_10_1016_j_ijbiomac_2022_07_105
crossref_primary_10_1038_s41570_018_0015_9
crossref_primary_10_1021_acs_bioconjchem_2c00411
crossref_primary_10_1021_acscentsci_5b00308
crossref_primary_10_1021_sb3000904
crossref_primary_10_1042_BST20200001
crossref_primary_10_1002_ange_201602353
crossref_primary_10_1021_acs_biomac_1c01280
crossref_primary_10_1021_ja302354v
crossref_primary_10_1021_acs_iecr_1c02842
crossref_primary_10_1021_cb300634b
crossref_primary_10_1039_C8RA06705H
crossref_primary_10_1016_j_bios_2022_114197
crossref_primary_10_1021_acs_bioconjchem_1c00099
crossref_primary_10_1021_acs_orglett_5b03625
crossref_primary_10_1002_ange_202205597
crossref_primary_10_1002_biot_201200022
crossref_primary_10_1002_bit_27329
crossref_primary_10_3390_bacteria1020011
crossref_primary_10_1021_acs_molpharmaceut_9b00434
crossref_primary_10_1515_hsz_2021_0321
crossref_primary_10_1016_j_biortech_2013_08_088
crossref_primary_10_1038_s41467_018_05344_9
crossref_primary_10_3390_molecules29020366
crossref_primary_10_1038_nprot_2013_101
crossref_primary_10_1002_anie_202310910
crossref_primary_10_1021_acs_bioconjchem_6b00638
crossref_primary_10_1073_pnas_2017871118
crossref_primary_10_1038_nmeth_3209
crossref_primary_10_1002_cbic_201402013
crossref_primary_10_1016_j_cclet_2018_05_006
crossref_primary_10_1016_j_ymeth_2014_02_020
crossref_primary_10_1002_anie_201403582
crossref_primary_10_1007_s10875_016_0265_6
crossref_primary_10_1016_j_cbpa_2014_01_006
crossref_primary_10_1038_nprot_2015_026
crossref_primary_10_1038_s41589_019_0227_4
crossref_primary_10_1016_j_bbagen_2019_129419
crossref_primary_10_1038_s41467_020_17443_7
crossref_primary_10_1002_ange_201408529
crossref_primary_10_1002_ange_201701419
crossref_primary_10_1016_j_bios_2013_01_050
crossref_primary_10_1016_j_apsb_2020_11_011
crossref_primary_10_7554_eLife_74282
crossref_primary_10_3390_molecules24142620
crossref_primary_10_1002_biot_202300210
crossref_primary_10_1016_j_cell_2018_10_053
crossref_primary_10_1073_pnas_1701746114
crossref_primary_10_1016_j_omton_2024_200931
crossref_primary_10_1016_j_cclet_2018_05_024
crossref_primary_10_1016_j_aca_2023_341994
crossref_primary_10_1016_j_cbpa_2014_09_020
crossref_primary_10_1021_jacs_8b05200
crossref_primary_10_1002_btpr_3146
crossref_primary_10_1016_j_sbi_2017_12_010
crossref_primary_10_1002_ange_202201887
crossref_primary_10_1021_jacs_8b10286
crossref_primary_10_1002_chem_202401961
crossref_primary_10_1016_j_abb_2012_03_009
crossref_primary_10_1016_j_bbrc_2016_08_175
crossref_primary_10_3390_ijms23158707
crossref_primary_10_1021_cbmi_4c00067
crossref_primary_10_1007_s10858_016_0019_z
crossref_primary_10_1002_smll_202101066
crossref_primary_10_1021_bi400268m
crossref_primary_10_1088_1361_6463_aae0e2
crossref_primary_10_1002_anie_202315286
crossref_primary_10_1074_jbc_RA119_012039
crossref_primary_10_1021_ie503060a
crossref_primary_10_1021_acs_bioconjchem_5b00558
crossref_primary_10_1146_annurev_cellbio_100617_062527
crossref_primary_10_1002_bit_25993
crossref_primary_10_1002_bit_25637
crossref_primary_10_1002_biot_201600696
crossref_primary_10_1016_j_addr_2022_114460
crossref_primary_10_1002_eng2_12040
crossref_primary_10_1021_acsmacrolett_0c00109
crossref_primary_10_1073_pnas_1409861111
crossref_primary_10_1038_s41467_023_39233_7
crossref_primary_10_1021_acs_bioconjchem_7b00478
crossref_primary_10_1039_D1OB00411E
crossref_primary_10_1093_nar_gkw710
crossref_primary_10_1017_S0033583517000051
crossref_primary_10_1073_pnas_2101596118
crossref_primary_10_1021_acs_bioconjchem_9b00568
crossref_primary_10_1021_acs_bioconjchem_7b00592
crossref_primary_10_1002_cbic_202400190
crossref_primary_10_1071_CH16589
crossref_primary_10_1039_D4CB00024B
crossref_primary_10_3389_fimmu_2023_1264179
crossref_primary_10_1016_j_pep_2019_04_004
crossref_primary_10_1021_jacs_7b13237
crossref_primary_10_1371_journal_pone_0154607
crossref_primary_10_1039_C8CC02760A
crossref_primary_10_1093_protein_gzaa018
crossref_primary_10_3389_fimmu_2021_799910
crossref_primary_10_1021_acs_biochem_7b00108
crossref_primary_10_1002_anie_201707623
crossref_primary_10_1038_s41570_024_00591_5
crossref_primary_10_1126_sciadv_ade0073
crossref_primary_10_1007_s10858_015_9981_0
crossref_primary_10_1016_j_ymeth_2018_07_013
crossref_primary_10_1021_acs_bioconjchem_9b00534
crossref_primary_10_1158_1535_7163_MCT_16_0688
crossref_primary_10_7554_eLife_88492
crossref_primary_10_1021_acs_analchem_1c02322
crossref_primary_10_1002_pro_4266
crossref_primary_10_1016_j_sbi_2016_05_021
crossref_primary_10_2967_jnumed_116_186007
crossref_primary_10_3389_fchem_2022_958272
crossref_primary_10_1016_j_molcel_2014_02_003
crossref_primary_10_1021_jacs_6b05413
crossref_primary_10_1002_anie_201404616
crossref_primary_10_1039_C8CS00537K
crossref_primary_10_1002_anie_202310862
crossref_primary_10_1002_chem_202002740
crossref_primary_10_3390_molecules26185599
crossref_primary_10_1002_smll_201602267
crossref_primary_10_1021_acs_bioconjchem_9b00548
crossref_primary_10_1002_adma_202209904
crossref_primary_10_1063_5_0037793
crossref_primary_10_1038_s41557_024_01520_1
crossref_primary_10_1002_chem_201803485
crossref_primary_10_1038_s42004_023_00841_5
crossref_primary_10_1016_j_bbamem_2022_183884
crossref_primary_10_1128_AEM_00054_19
crossref_primary_10_1007_s00253_014_6048_1
crossref_primary_10_1002_psc_3657
crossref_primary_10_1093_nar_gkz1163
crossref_primary_10_1021_jacs_8b00172
crossref_primary_10_1080_07328303_2019_1609021
crossref_primary_10_1016_j_biortech_2017_05_031
crossref_primary_10_1016_j_bios_2021_113003
crossref_primary_10_7554_eLife_86090
crossref_primary_10_1016_j_bbrc_2017_03_016
crossref_primary_10_1038_s41586_019_1355_4
crossref_primary_10_1039_c3ob40633d
crossref_primary_10_1016_j_copbio_2017_05_012
crossref_primary_10_3390_microorganisms12010179
crossref_primary_10_1016_j_sna_2022_114114
crossref_primary_10_1002_cpps_38
crossref_primary_10_1016_j_ab_2017_01_008
crossref_primary_10_1155_2016_4131324
crossref_primary_10_1021_acschembio_4c00149
crossref_primary_10_1002_anie_201511894
crossref_primary_10_1002_bip_23390
crossref_primary_10_1074_mcp_RA118_001043
crossref_primary_10_1021_acs_chemrev_1c00260
crossref_primary_10_1038_s41467_021_26812_9
crossref_primary_10_12688_f1000research_9002_1
crossref_primary_10_1021_acs_analchem_7b04756
crossref_primary_10_1002_biof_2001
crossref_primary_10_1021_acs_orglett_3c01657
crossref_primary_10_1039_D1GC04387K
crossref_primary_10_1016_j_celrep_2023_113451
crossref_primary_10_1016_j_molcel_2023_11_027
crossref_primary_10_1002_ange_202109032
crossref_primary_10_1039_C8CS00981C
crossref_primary_10_1002_ange_202315286
crossref_primary_10_1016_j_xcrp_2023_101638
crossref_primary_10_1021_acschembio_3c00728
crossref_primary_10_1021_acs_langmuir_0c02575
crossref_primary_10_1021_acs_bioconjchem_9b00744
crossref_primary_10_1021_acs_chemrev_9b00372
crossref_primary_10_1002_ange_201403582
crossref_primary_10_1093_protein_gzt039
crossref_primary_10_1073_pnas_1411179111
crossref_primary_10_1126_scitranslmed_abq0991
crossref_primary_10_1002_anbr_202100142
crossref_primary_10_1016_j_ijbiomac_2023_127657
crossref_primary_10_1021_acsomega_4c05828
crossref_primary_10_1002_chem_201402072
crossref_primary_10_5936_csbj_201402001
crossref_primary_10_1002_anie_202205597
crossref_primary_10_1002_adhm_201300110
crossref_primary_10_1002_anie_202109032
crossref_primary_10_1002_cbic_202000745
crossref_primary_10_3390_molecules23010192
crossref_primary_10_1002_cbic_201700174
crossref_primary_10_1002_cbic_202000747
crossref_primary_10_1038_s41564_021_00877_0
crossref_primary_10_1073_pnas_1909653116
crossref_primary_10_1038_s41589_021_00774_x
crossref_primary_10_1021_acsomega_4c00489
crossref_primary_10_1002_cbic_201402290
crossref_primary_10_1021_acsomega_7b00478
crossref_primary_10_1038_s41467_023_43753_7
crossref_primary_10_1038_srep31899
crossref_primary_10_1038_s41556_020_0473_4
crossref_primary_10_1016_j_biotechadv_2015_06_002
crossref_primary_10_1016_j_pep_2017_03_010
crossref_primary_10_1371_journal_pone_0252558
crossref_primary_10_1021_acsami_9b05531
crossref_primary_10_1126_sciadv_aaw1822
crossref_primary_10_3390_toxins16040194
crossref_primary_10_1039_C7BM00691H
crossref_primary_10_3389_fimmu_2020_560244
crossref_primary_10_3390_microorganisms12071438
crossref_primary_10_1371_journal_pone_0184271
crossref_primary_10_1038_s41565_023_01536_7
crossref_primary_10_3390_cryst12081041
crossref_primary_10_1016_j_bmc_2013_03_039
crossref_primary_10_1084_jem_20161950
crossref_primary_10_3390_ijms231911537
crossref_primary_10_1016_j_csbj_2021_12_018
crossref_primary_10_1021_acssynbio_9b00407
crossref_primary_10_13070_mm_en_9_2795
crossref_primary_10_1016_j_pnmrs_2019_08_001
crossref_primary_10_1002_chem_201800812
crossref_primary_10_1021_jacs_5b11014
crossref_primary_10_1002_ange_201511894
crossref_primary_10_1039_C4SC02078B
crossref_primary_10_1016_j_biotechadv_2023_108108
crossref_primary_10_1021_jacs_4c12585
crossref_primary_10_1016_j_biomaterials_2021_121011
crossref_primary_10_1038_s41594_022_00815_6
crossref_primary_10_1039_D4SC01992J
crossref_primary_10_1002_mabi_202400316
crossref_primary_10_1042_BCJ20180885
crossref_primary_10_1002_ange_202214999
crossref_primary_10_1002_anie_201307869
crossref_primary_10_3389_fmolb_2022_835302
crossref_primary_10_1002_ange_202310910
crossref_primary_10_1002_anie_202209945
crossref_primary_10_1021_acs_biomac_2c01158
crossref_primary_10_1002_anie_201602353
crossref_primary_10_1016_j_febslet_2014_10_020
crossref_primary_10_1016_j_molcel_2019_10_006
crossref_primary_10_1021_acs_chemrev_9b00450
crossref_primary_10_1016_j_chembiol_2012_06_014
crossref_primary_10_1002_cpz1_311
crossref_primary_10_1111_febs_14766
crossref_primary_10_3389_fbioe_2023_1162720
crossref_primary_10_1002_bit_25939
crossref_primary_10_1016_j_colsurfb_2015_02_044
crossref_primary_10_1021_bc500230r
crossref_primary_10_1038_s41563_021_01136_7
crossref_primary_10_1002_ange_201404616
crossref_primary_10_1002_psc_2600
crossref_primary_10_1002_ange_202209945
crossref_primary_10_1039_D2CB00231K
crossref_primary_10_1016_j_copbio_2016_01_003
crossref_primary_10_1016_j_cell_2015_03_012
crossref_primary_10_1039_D3CB00229B
crossref_primary_10_1126_scisignal_abc9012
crossref_primary_10_1002_pro_2467
crossref_primary_10_1074_jbc_RA120_013852
crossref_primary_10_1016_j_biomaterials_2017_03_030
crossref_primary_10_1039_D0CS01148G
crossref_primary_10_1016_j_chom_2021_01_006
crossref_primary_10_1084_jem_20131603
crossref_primary_10_1039_D1CC01348C
crossref_primary_10_1038_srep11944
crossref_primary_10_1002_biot_201500012
crossref_primary_10_1016_j_cell_2018_09_039
crossref_primary_10_1016_j_celrep_2022_110531
crossref_primary_10_3389_fbioe_2021_794742
crossref_primary_10_1021_acs_bioconjchem_1c00442
crossref_primary_10_1007_s00253_014_5704_9
crossref_primary_10_1038_nature25442
crossref_primary_10_1021_acs_chemrev_6b00832
crossref_primary_10_1021_acs_biomac_5b00549
crossref_primary_10_1002_psc_2943
crossref_primary_10_1038_nmeth_4079
crossref_primary_10_7554_eLife_56945
crossref_primary_10_1021_ja205630g
crossref_primary_10_1016_j_jconrel_2019_11_018
crossref_primary_10_1016_j_molcel_2023_05_034
crossref_primary_10_1016_j_jbc_2025_108382
crossref_primary_10_1186_s12934_024_02386_1
crossref_primary_10_1021_acschembio_4c00443
crossref_primary_10_1016_j_fgb_2013_11_006
crossref_primary_10_1002_cplu_201900687
crossref_primary_10_1016_j_copbio_2013_03_001
crossref_primary_10_1016_j_tibs_2024_04_003
crossref_primary_10_1021_acs_bioconjchem_4c00264
crossref_primary_10_1002_ange_202310862
crossref_primary_10_1002_anie_201701419
crossref_primary_10_1038_s41598_021_90593_w
crossref_primary_10_1038_s41598_017_06856_y
crossref_primary_10_1074_jbc_M116_764225
crossref_primary_10_1016_j_cell_2019_08_037
crossref_primary_10_1146_annurev_bioeng_111215_024421
crossref_primary_10_3389_fchem_2019_00238
crossref_primary_10_1021_jacs_4c15674
crossref_primary_10_1016_j_celrep_2022_110841
crossref_primary_10_1073_pnas_2206513119
crossref_primary_10_1002_bit_27024
crossref_primary_10_1016_j_sbi_2012_03_010
crossref_primary_10_1002_bit_28110
crossref_primary_10_1016_j_actbio_2019_06_019
crossref_primary_10_1021_cb500462t
crossref_primary_10_1016_j_celrep_2019_08_053
crossref_primary_10_1039_C8CC04495C
crossref_primary_10_1016_j_sbi_2018_03_014
crossref_primary_10_1016_j_jmb_2018_09_003
crossref_primary_10_3390_antib13010018
crossref_primary_10_1021_acsomega_4c09900
crossref_primary_10_1021_jacs_6b12637
crossref_primary_10_1002_psc_2980
crossref_primary_10_1038_s41467_024_45541_3
crossref_primary_10_1002_adma_202209476
crossref_primary_10_1002_anie_201408529
crossref_primary_10_1111_febs_13288
crossref_primary_10_1039_D1OB00608H
crossref_primary_10_1146_annurev_biochem_062917_012034
crossref_primary_10_1126_sciadv_abd3916
crossref_primary_10_1074_jbc_M117_782037
crossref_primary_10_1021_acs_analchem_8b03716
crossref_primary_10_1111_1567_1364_12212
crossref_primary_10_1021_acscatal_4c00487
crossref_primary_10_1186_s40580_017_0103_4
crossref_primary_10_1038_s41589_020_00706_1
crossref_primary_10_1371_journal_pone_0131177
crossref_primary_10_1021_jacsau_2c00617
crossref_primary_10_1021_acs_chemrev_9b00738
crossref_primary_10_1186_s12934_023_02134_x
crossref_primary_10_3390_antib13020037
crossref_primary_10_1038_nsmb_3012
crossref_primary_10_1038_nsmb_3375
crossref_primary_10_1016_j_jbc_2021_100981
crossref_primary_10_1002_ange_201707623
crossref_primary_10_1186_s12934_018_0881_3
crossref_primary_10_1038_nbt_3563
Cites_doi 10.1038/nbt0697-553
10.1016/j.jmb.2009.02.010
10.1093/nar/gni116
10.1038/nbt0706-769
10.1074/jbc.M800974200
10.1021/ja046238v
10.1016/j.sbi.2007.08.012
10.1021/cb700054k
10.1038/nature06032
10.1016/j.sbi.2005.06.004
10.1038/nature06879
10.1002/cbic.200900384
10.1021/ja047749k
10.1002/cbic.200800724
10.1021/ja053322h
10.1038/80267
10.1073/pnas.0504733102
10.1016/j.tibtech.2003.09.001
10.1073/pnas.0809851105
10.1016/j.cbpa.2008.01.027
10.1126/science.1190239
10.1006/jmbi.1996.0049
10.1038/nchembio.2007.31
10.1016/S0958-1669(03)00099-5
10.1039/b616252e
10.1074/jbc.M109.022624
10.1038/nchembio.80
10.1073/pnas.0507705102
10.1016/S0958-1669(03)00092-2
10.1073/pnas.0914067107
10.1021/bi700448e
10.1073/pnas.0910781107
10.1016/j.ab.2003.10.023
10.1038/nbt1341
10.1126/science.1188934
10.1126/science.1152692
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 12, 2011
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 12, 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1101046108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
AGRICOLA


MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11404
ExternalDocumentID PMC3136257
2399999521
21697512
10_1073_pnas_1101046108
108_28_11399
27978812
Genre Validation Studies
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM065400
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c597t-9a84786ba1e37e6d2e21a201ad3fdcfdf4ed6a5498cffe7b47396f1235d98f23
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:12:10 EDT 2025
Fri Jul 11 16:27:43 EDT 2025
Fri Jul 11 02:44:54 EDT 2025
Fri Jul 11 10:53:46 EDT 2025
Sat Aug 23 13:29:22 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Tue Jul 01 00:47:12 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Wed Nov 11 00:29:37 EST 2020
Thu May 29 08:40:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597t-9a84786ba1e37e6d2e21a201ad3fdcfdf4ed6a5498cffe7b47396f1235d98f23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ObjectType-Article-2
Edited by David Baker, University of Washington, Seattle, WA, and approved May 24, 2011 (received for review January 22, 2011)
Author contributions: I.C., B.M.D., and D.R.L. designed research; I.C. and B.M.D. performed research; I.C. and B.M.D. contributed new reagents/analytic tools; I.C., B.M.D., and D.R.L. analyzed data; and I.C., B.M.D., and D.R.L. wrote the paper.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3136257
PMID 21697512
PQID 877025476
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_899165131
proquest_miscellaneous_876799418
proquest_miscellaneous_1817848537
pubmed_primary_21697512
crossref_citationtrail_10_1073_pnas_1101046108
crossref_primary_10_1073_pnas_1101046108
pnas_primary_108_28_11399
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3136257
proquest_journals_877025476
jstor_primary_27978812
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-12
PublicationDateYYYYMMDD 2011-07-12
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
18284924 - Curr Opin Chem Biol. 2008 Apr;12(2):151-8
17891153 - Nat Chem Biol. 2007 Nov;3(11):707-8
15548001 - J Am Chem Soc. 2004 Nov 24;126(46):15051-9
20558668 - Science. 2010 Jul 16;329(5989):305-9
19592495 - J Biol Chem. 2009 Sep 4;284(36):24465-77
17465518 - ACS Chem Biol. 2007 May 22;2(5):337-46
18323453 - Science. 2008 Mar 7;319(5868):1387-91
18354394 - Nature. 2008 May 8;453(7192):190-5
20534555 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10914-9
20647463 - Science. 2010 Jul 16;329(5989):309-13
18391948 - Nat Chem Biol. 2008 May;4(5):290-4
11017045 - Nat Biotechnol. 2000 Oct;18(10):1071-4
16144377 - J Am Chem Soc. 2005 Sep 14;127(36):12470-1
14769334 - Anal Biochem. 2004 Mar 1;326(1):42-8
16446453 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1693-8
16841057 - Nat Biotechnol. 2006 Jul;24(7):769-76
17873865 - Nat Biotechnol. 2007 Oct;25(10):1145-7
9181578 - Nat Biotechnol. 1997 Jun;15(6):553-7
18375951 - J Biol Chem. 2008 May 23;283(21):14762-71
12943855 - Curr Opin Biotechnol. 2003 Aug;14(4):438-43
17870469 - Curr Opin Struct Biol. 2007 Aug;17(4):467-73
19004779 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17694-9
19199328 - Chembiochem. 2009 Mar 23;10(5):787-98
19780076 - Chembiochem. 2009 Nov 23;10(17):2704-15
8568899 - J Mol Biol. 1996 Feb 2;255(4):589-603
17518446 - Biochemistry. 2007 Jun 19;46(24):7269-78
16236721 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15815-20
20142500 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9
17700701 - Nature. 2007 Aug 16;448(7155):828-31
14573359 - Trends Biotechnol. 2003 Nov;21(11):474-8
16006119 - Curr Opin Struct Biol. 2005 Aug;15(4):447-52
16061932 - Nucleic Acids Res. 2005;33(13):e117
17476389 - Chem Commun (Camb). 2007 May 14;(18):1773-88
12943856 - Curr Opin Biotechnol. 2003 Aug;14(4):444-50
15212504 - J Am Chem Soc. 2004 Jun 30;126(25):7754-5
19340948 - J Mol Biol. 2009 Apr 10;387(4):883-98
References_xml – ident: e_1_3_3_19_2
  doi: 10.1038/nbt0697-553
– ident: e_1_3_3_33_2
  doi: 10.1016/j.jmb.2009.02.010
– ident: e_1_3_3_25_2
  doi: 10.1093/nar/gni116
– ident: e_1_3_3_5_2
  doi: 10.1038/nbt0706-769
– ident: e_1_3_3_26_2
  doi: 10.1074/jbc.M800974200
– ident: e_1_3_3_14_2
  doi: 10.1021/ja046238v
– ident: e_1_3_3_18_2
  doi: 10.1016/j.sbi.2007.08.012
– ident: e_1_3_3_22_2
  doi: 10.1021/cb700054k
– ident: e_1_3_3_16_2
  doi: 10.1038/nature06032
– ident: e_1_3_3_9_2
  doi: 10.1016/j.sbi.2005.06.004
– ident: e_1_3_3_35_2
  doi: 10.1038/nature06879
– ident: e_1_3_3_32_2
  doi: 10.1002/cbic.200900384
– ident: e_1_3_3_21_2
  doi: 10.1021/ja047749k
– ident: e_1_3_3_23_2
  doi: 10.1002/cbic.200800724
– ident: e_1_3_3_15_2
  doi: 10.1021/ja053322h
– ident: e_1_3_3_17_2
  doi: 10.1038/80267
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.0504733102
– ident: e_1_3_3_10_2
  doi: 10.1016/j.tibtech.2003.09.001
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.0809851105
– ident: e_1_3_3_8_2
  doi: 10.1016/j.cbpa.2008.01.027
– ident: e_1_3_3_36_2
  doi: 10.1126/science.1190239
– ident: e_1_3_3_24_2
  doi: 10.1006/jmbi.1996.0049
– ident: e_1_3_3_4_2
  doi: 10.1038/nchembio.2007.31
– ident: e_1_3_3_7_2
  doi: 10.1016/S0958-1669(03)00099-5
– ident: e_1_3_3_13_2
  doi: 10.1039/b616252e
– ident: e_1_3_3_29_2
  doi: 10.1074/jbc.M109.022624
– ident: e_1_3_3_20_2
  doi: 10.1038/nchembio.80
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.0507705102
– ident: e_1_3_3_6_2
  doi: 10.1016/S0958-1669(03)00092-2
– ident: e_1_3_3_2_2
  doi: 10.1073/pnas.0914067107
– ident: e_1_3_3_27_2
  doi: 10.1021/bi700448e
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.0910781107
– ident: e_1_3_3_28_2
  doi: 10.1016/j.ab.2003.10.023
– ident: e_1_3_3_11_2
  doi: 10.1038/nbt1341
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1188934
– ident: e_1_3_3_34_2
  doi: 10.1126/science.1152692
– reference: 19199328 - Chembiochem. 2009 Mar 23;10(5):787-98
– reference: 12943856 - Curr Opin Biotechnol. 2003 Aug;14(4):444-50
– reference: 20142500 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9
– reference: 14573359 - Trends Biotechnol. 2003 Nov;21(11):474-8
– reference: 15212504 - J Am Chem Soc. 2004 Jun 30;126(25):7754-5
– reference: 19780076 - Chembiochem. 2009 Nov 23;10(17):2704-15
– reference: 16446453 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1693-8
– reference: 17476389 - Chem Commun (Camb). 2007 May 14;(18):1773-88
– reference: 17700701 - Nature. 2007 Aug 16;448(7155):828-31
– reference: 17891153 - Nat Chem Biol. 2007 Nov;3(11):707-8
– reference: 16006119 - Curr Opin Struct Biol. 2005 Aug;15(4):447-52
– reference: 8568899 - J Mol Biol. 1996 Feb 2;255(4):589-603
– reference: 17465518 - ACS Chem Biol. 2007 May 22;2(5):337-46
– reference: 17870469 - Curr Opin Struct Biol. 2007 Aug;17(4):467-73
– reference: 14769334 - Anal Biochem. 2004 Mar 1;326(1):42-8
– reference: 20534555 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10914-9
– reference: 16061932 - Nucleic Acids Res. 2005;33(13):e117
– reference: 18391948 - Nat Chem Biol. 2008 May;4(5):290-4
– reference: 19592495 - J Biol Chem. 2009 Sep 4;284(36):24465-77
– reference: 18284924 - Curr Opin Chem Biol. 2008 Apr;12(2):151-8
– reference: 18375951 - J Biol Chem. 2008 May 23;283(21):14762-71
– reference: 12943855 - Curr Opin Biotechnol. 2003 Aug;14(4):438-43
– reference: 15548001 - J Am Chem Soc. 2004 Nov 24;126(46):15051-9
– reference: 9181578 - Nat Biotechnol. 1997 Jun;15(6):553-7
– reference: 16841057 - Nat Biotechnol. 2006 Jul;24(7):769-76
– reference: 19004779 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17694-9
– reference: 19340948 - J Mol Biol. 2009 Apr 10;387(4):883-98
– reference: 16236721 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15815-20
– reference: 17518446 - Biochemistry. 2007 Jun 19;46(24):7269-78
– reference: 18354394 - Nature. 2008 May 8;453(7192):190-5
– reference: 20558668 - Science. 2010 Jul 16;329(5989):305-9
– reference: 18323453 - Science. 2008 Mar 7;319(5868):1387-91
– reference: 20647463 - Science. 2010 Jul 16;329(5989):309-13
– reference: 16144377 - J Am Chem Soc. 2005 Sep 14;127(36):12470-1
– reference: 11017045 - Nat Biotechnol. 2000 Oct;18(10):1071-4
– reference: 17873865 - Nat Biotechnol. 2007 Oct;25(10):1145-7
SSID ssj0009580
Score 2.5447023
Snippet The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11399
SubjectTerms Amino Acid Sequence
Aminoacyltransferases - chemistry
Aminoacyltransferases - genetics
Aminoacyltransferases - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Biological Sciences
Catalysis
Catalysts
catalytic activity
CD154 antigen
chemical bonding
Chemical reactions
Cysteine Endopeptidases - chemistry
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - metabolism
directed evolution
Directed molecular evolution
Directed Molecular Evolution - methods
DNA, Recombinant - genetics
Enzyme substrates
Enzymes
Enzymes - chemistry
Enzymes - genetics
Enzymes - metabolism
Escherichia coli - enzymology
Escherichia coli - genetics
Evolution
Flow cytometry
Fluorescence
Gene Library
Genetic mutation
HeLa Cells
Humans
Kinetics
Libraries
Models, Molecular
Molecular Sequence Data
Molecules
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutant Proteins - metabolism
Peptide Library
Protein Engineering
proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
screening
sortase
sortase A
Staphylococcus aureus
Staphylococcus aureus - enzymology
Staphylococcus aureus - genetics
Substrate Specificity
Yeast
Yeasts
Title A general strategy for the evolution of bond-forming enzymes using yeast display
URI https://www.jstor.org/stable/27978812
http://www.pnas.org/content/108/28/11399.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21697512
https://www.proquest.com/docview/877025476
https://www.proquest.com/docview/1817848537
https://www.proquest.com/docview/876799418
https://www.proquest.com/docview/899165131
https://pubmed.ncbi.nlm.nih.gov/PMC3136257
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDDIBshIPAxVKXXsxM5jNW0qqJQ-dFLfoiS2xaQpndYWqfvruXOcpJ06fr1EUXxJrNwX-3y--46Qj6rgwlqRhoKrJBRxrMJcYtiOgfmmYHFZO_S_TZLRpfg6j-dduVSXXbIq-uXd3ryS_9EqXAO9YpbsP2i2fShcgHPQLxxBw3D8Kx0PsQAyOpV6y5pkdtNGDZqf_s1oDRaLSodonaJfwFR3G2RoWjsvwQZr9-A2zc11vrPDO21ntmUTRzBpHIfDLg3Fjw3LXtibTrqixmc-6eMLEgy3xvLitvYNOEao1uUzvlq30fU-flF3flUZsi3PJBKMhomoa3_2zZ5rzXA7UFu48pnh9ejJwBxN947rMBBhMeIqX2LeAnMs8aqbwppt-8n37OJyPM5m5_PZY_IkgqWDC_YcbRMxq5qhwnetoXuS_PO9x-9YKnWwKjLggtC-1cj9oNotK2X2nDzzyws6rLFySB6Z6gU5bJRETz3L-KeXZDqkHjy0AQ8FiFBQNG3BQxeWboOHevBQBx7qwEM9eF6R2cX57GwU-vIaYQmryFWY5mCZqKTImeHSJDoyEctBtbnmVpdWW2F0ksciVaW1RhZC8jSxmFutU2UjfkQOqkVl3hCqikinotR8oGNRwpRghB3wiBshc2gYBKTffMms9NTzWAHlOnMhEJJn-FWz7tMH5LS94aZmXXlY9MipppWLZIolEqKABE60u19lkcocxgJy0igw8__zMlNSIjWETALyoW2FwRZ30PLKLNbwWsWkEmDhyoDQB2TAvJBpKpj6jQguymLGWUBe16Dpes-SVMbYe7kDp1YA6eB3W6qrH44WnjMwRmN5_OeenZCn3S_8lhysbtfmHdjWq-K9-1l-AXkOzl0
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+strategy+for+the+evolution+of+bond-forming+enzymes+using+yeast+display&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chen%2C+Irwin&rft.au=Dorr%2C+Brent+M&rft.au=Liu%2C+David+R&rft.date=2011-07-12&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=28&rft.spage=11399&rft_id=info:doi/10.1073%2Fpnas.1101046108&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F28.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F28.cover.gif