APA-Scan: detection and visualization of 3'-UTR alternative polyadenylation with RNA-seq and 3'-end-seq data

The eukaryotic genome is capable of producing multiple isoforms from a gene by alternative polyadenylation (APA) during pre-mRNA processing. APA in the 3'-untranslated region (3'-UTR) of mRNA produces transcripts with shorter or longer 3'-UTR. Often, 3'-UTR serves as a binding pl...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 23; no. Suppl 3; p. 396
Main Authors Fahmi, Naima Ahmed, Ahmed, Khandakar Tanvir, Chang, Jae-Woong, Nassereddeen, Heba, Fan, Deliang, Yong, Jeongsik, Zhang, Wei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 28.09.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The eukaryotic genome is capable of producing multiple isoforms from a gene by alternative polyadenylation (APA) during pre-mRNA processing. APA in the 3'-untranslated region (3'-UTR) of mRNA produces transcripts with shorter or longer 3'-UTR. Often, 3'-UTR serves as a binding platform for microRNAs and RNA-binding proteins, which affect the fate of the mRNA transcript. Thus, 3'-UTR APA is known to modulate translation and provides a mean to regulate gene expression at the post-transcriptional level. Current bioinformatics pipelines have limited capability in profiling 3'-UTR APA events due to incomplete annotations and a low-resolution analyzing power: widely available bioinformatics pipelines do not reference actionable polyadenylation (cleavage) sites but simulate 3'-UTR APA only using RNA-seq read coverage, causing false positive identifications. To overcome these limitations, we developed APA-Scan, a robust program that identifies 3'-UTR APA events and visualizes the RNA-seq short-read coverage with gene annotations. APA-Scan utilizes either predicted or experimentally validated actionable polyadenylation signals as a reference for polyadenylation sites and calculates the quantity of long and short 3'-UTR transcripts in the RNA-seq data. APA-Scan works in three major steps: (i) calculate the read coverage of the 3'-UTR regions of genes; (ii) identify the potential APA sites and evaluate the significance of the events among two biological conditions; (iii) graphical representation of user specific event with 3'-UTR annotation and read coverage on the 3'-UTR regions. APA-Scan is implemented in Python3. Source code and a comprehensive user's manual are freely available at https://github.com/compbiolabucf/APA-Scan . APA-Scan was applied to both simulated and real RNA-seq datasets and compared with two widely used baselines DaPars and APAtrap. In simulation APA-Scan significantly improved the accuracy of 3'-UTR APA identification compared to the other baselines. The performance of APA-Scan was also validated by 3'-end-seq data and qPCR on mouse embryonic fibroblast cells. The experiments confirm that APA-Scan can detect unannotated 3'-UTR APA events and improve genome annotation. APA-Scan is a comprehensive computational pipeline to detect transcriptome-wide 3'-UTR APA events. The pipeline integrates both RNA-seq and 3'-end-seq data information and can efficiently identify the significant events with a high-resolution short reads coverage plots.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-022-04939-w