Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI

As an object's electrical passive property, the electrical conductivity is proportional to the mobility and concentration of charged carriers that reflect the brain micro-structures. The measured multi-b diffusion-weighted imaging (Mb-DWI) data by controlling the degree of applied diffusion wei...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 20; no. 1; p. 29
Main Authors Lee, Mun Bae, Kim, Hyung Joong, Kwon, Oh In
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 25.03.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As an object's electrical passive property, the electrical conductivity is proportional to the mobility and concentration of charged carriers that reflect the brain micro-structures. The measured multi-b diffusion-weighted imaging (Mb-DWI) data by controlling the degree of applied diffusion weights can quantify the apparent mobility of water molecules within biological tissues. Without any external electrical stimulation, magnetic resonance electrical properties tomography (MREPT) techniques have successfully recovered the conductivity distribution at a Larmor-frequency. This work provides a non-invasive method to decompose the high-frequency conductivity into the extracellular medium conductivity based on a two-compartment model using Mb-DWI. To separate the intra- and extracellular micro-structures from the recovered high-frequency conductivity, we include higher b-values DWI and apply the random decision forests to stably determine the micro-structural diffusion parameters. To demonstrate the proposed method, we conducted phantom and human experiments by comparing the results of reconstructed conductivity of extracellular medium and the conductivity in the intra-neurite and intra-cell body. The phantom and human experiments verify that the proposed method can recover the extracellular electrical properties from the high-frequency conductivity using a routine protocol sequence of MRI scan. We have proposed a method to decompose the electrical properties in the extracellular, intra-neurite, and soma compartments from the high-frequency conductivity map, reconstructed by solving the electro-magnetic equation with measured B1 phase signals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1475-925X
1475-925X
DOI:10.1186/s12938-021-00869-5