Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel

Docetaxel is a cornerstone treatment for metastatic, castration resistant prostate cancer (CRPC) which remains a leading cause of cancer-related deaths, worldwide. The clinical usage of docetaxel has resulted in modest gains in survival, primarily due to the development of resistance. There are curr...

Full description

Saved in:
Bibliographic Details
Published inOncotarget Vol. 6; no. 25; pp. 21740 - 21754
Main Authors Kharaziha, Pedram, Chioureas, Dimitris, Rutishauser, Dorothea, Baltatzis, George, Lennartsson, Lena, Fonseca, Pedro, Azimi, Alireza, Hultenby, Kjell, Zubarev, Roman, Ullén, Anders, Yachnin, Jeffrey, Nilsson, Sten, Panaretakis, Theocharis
Format Journal Article
LanguageEnglish
Published United States Impact Journals LLC 28.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Docetaxel is a cornerstone treatment for metastatic, castration resistant prostate cancer (CRPC) which remains a leading cause of cancer-related deaths, worldwide. The clinical usage of docetaxel has resulted in modest gains in survival, primarily due to the development of resistance. There are currently no clinical biomarkers available that predict whether a CRPC patient will respond or acquire resistance to this therapy. Comparative proteomics analysis of exosomes secreted from DU145 prostate cancer cells that are sensitive (DU145 Tax-Sen) or have acquired resistance (DU145 Tax-Res) to docetaxel, demonstrated significant differences in the amount of exosomes secreted and in their molecular composition. A panel of proteins was identified by proteomics to be differentially enriched in DU145 Tax-Res compared to DU145 Tax-Sen exosomes and was validated by western blotting. Importantly, we identified MDR-1, MDR-3, Endophilin-A2 and PABP4 that were enriched only in DU145 Tax-Res exosomes. We validated the presence of these proteins in the serum of a small cohort of patients. DU145 cells that have uptaken DU145 Tax-Res exosomes show properties of increased matrix degradation. In summary, exosomes derived from DU145 Tax-Res cells may be a valuable source of biomarkers for response to therapy.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-News-1
ObjectType-Feature-3
content type line 23
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.3226