一类分数阶非线性微分包含初值问题的可解性
O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b], a>0,x(a)=x0的可解性.其中,F:J×R→2R是一个L1-Carathéodary函数,x(α)(t)表示x在t上的α阶导数,α∈(0,1].最后,分别给出了当集值映射F关于第二变量x次线性和至多线性增长时解的存在结果....
Saved in:
Published in | 浙江大学学报(理学版) Vol. 44; no. 3; pp. 287 - 291 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
西北师范大学 数学与统计学院, 甘肃 兰州, 730070
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1008-9497 |
DOI | 10.3785/j.issn.1008-9497.2017.03.007 |
Cover
Abstract | O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b], a>0,x(a)=x0的可解性.其中,F:J×R→2R是一个L1-Carathéodary函数,x(α)(t)表示x在t上的α阶导数,α∈(0,1].最后,分别给出了当集值映射F关于第二变量x次线性和至多线性增长时解的存在结果. |
---|---|
AbstractList | O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b], a>0,x(a)=x0的可解性.其中,F:J×R→2R是一个L1-Carathéodary函数,x(α)(t)表示x在t上的α阶导数,α∈(0,1].最后,分别给出了当集值映射F关于第二变量x次线性和至多线性增长时解的存在结果. |
Abstract_FL | In this paper, using Bohnenblust-Karlin's fixed point theorem and combining the upper and lower solution method, we mainly study the solvability of Cauchy problem for nonlinear fractional differential inclusions{x(α)(t)∈F(t,x(t)), t∈J=[a,b],a>0,x(a)=x0,where F:J×R→2R is L1-Carathéodary function, x(α)(t) denotes the conformable fractional derivative of x at t of order α, α∈(0,1].By applying this theorem, we arrive at two existence results when the multi-valued nonlinearity F has sub-linear or linear growth about the second variable. |
Author | 杨小娟 韩晓玲 |
AuthorAffiliation | 西北师范大学 数学与统计学院, 甘肃 兰州, 730070 |
AuthorAffiliation_xml | – name: 西北师范大学 数学与统计学院, 甘肃 兰州, 730070 |
Author_FL | HAN Xiaoling YANG Xiaojuan |
Author_FL_xml | – sequence: 1 fullname: YANG Xiaojuan – sequence: 2 fullname: HAN Xiaoling |
Author_xml | – sequence: 1 fullname: 杨小娟 – sequence: 2 fullname: 韩晓玲 |
BookMark | eNrjYmDJy89LZWBQMTTQMza3MNXP0sssLs7TMzQwsNC1NLE01zMyMDTXMzDWMzAwZ2HghItzMPAWF2cmGRgYGpgaGllacDLYPNnR8Hzj7qcdbc-mbng5Y9vLufOe79r_rGH5033rgIJPe1qfTlj9tGPu04Y9L6eve7loxvNZLU_7179YvhiohoeBNS0xpziVF0pzM4S4uYY4e-j6-Lt7Ojv66CabWprrmpmZpZlYmKYaGhqbJ6eYJCaZpqaZGFlYGFmmpBibGxqmGCSbGRqkJhuZpZoapaYaJyUbJRkmm5immiemWpokmxpzM6hDjC1PzEtLzEuPz8ovLcoDWhhflZVSUZEE8qyBMdCrxgBtNmM7 |
ClassificationCodes | O175.8 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3785/j.issn.1008-9497.2017.03.007 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | The solvability of Cauchy problem for nonlinear fractional differential inclusions |
EndPage | 291 |
ExternalDocumentID | zjdxxb201703007 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (11561063) |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-c597-666f485e1137cd4ab5ef428829dd3711d0c610ec26e52ee3bc2b1c45e7ae94c53 |
ISSN | 1008-9497 |
IngestDate | Thu May 29 04:06:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 微分包含 fractionl derivatives 分数阶导数 existence of solutions Bohnenblust-Karlin's fixed point theorem Bohnenblust-Karlin不动点定理 differential inclusions 可解性 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c597-666f485e1137cd4ab5ef428829dd3711d0c610ec26e52ee3bc2b1c45e7ae94c53 |
PageCount | 5 |
ParticipantIDs | wanfang_journals_zjdxxb201703007 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 浙江大学学报(理学版) |
PublicationTitle_FL | Journal of Zhejiang University(Science Edition) |
PublicationYear | 2017 |
Publisher | 西北师范大学 数学与统计学院, 甘肃 兰州, 730070 |
Publisher_xml | – name: 西北师范大学 数学与统计学院, 甘肃 兰州, 730070 |
SSID | ssib001051298 ssib051373732 ssib002258177 ssib004369313 ssib008679801 ssib002476865 ssib023167501 ssib059160192 ssib000948450 ssib002040240 ssib001104615 ssib000969734 ssib008143637 ssib006704891 ssj0002507526 |
Score | 2.068945 |
Snippet | O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b],... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 287 |
Title | 一类分数阶非线性微分包含初值问题的可解性 |
URI | https://d.wanfangdata.com.cn/periodical/zjdxxb201703007 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAMNQK4kUUFb_poXsqqUl2N7sLXjZtHkWopwq9lZdko3h4Qm2h9CA9qPQg6EUshXrQQw9C1YuIiv4Z0_r-hTO7abpU8YsHj3mb2ZnZmbzMzGZ2NwjGK1r0wc_XYW0SFTJeR6FidRlWFS7c7NeqqHC98-yNdOYmuz7P50eObHpVS8tLxWS5-st1Jf9jVWgDu-Iq2X-wbEcUGgAG-8I3WBi-_8rGJGckk1iskAuSxSTLSM6JhJaU5ClRnGRwSRElSZZaYJqo3CJrkvUQB_pqgb2ynOjc6w7AFJEcAQU4-5SBAgIRyaYsQWF7KaIT5AKUlSaSWZwe0cBCIn1NO15-NIyNGdBXFoiJ6mFHzVqR9DTRqQcABU00iNRD7tKxi1ppWxxBpLKXHE43zWH1ASjSjjVC6bATDKh3gKJQAm2lAZkUteRykiX-3IhbBGrvYzs6bjVp1aWcJqUVQFoF0p9HNOHZppPbGdLZJrOKkKhZHXs4CqUCRcO_wg6dWZVDtwT4TFgZ9qlmAg0NiHhQgDszpXU9WIiimKtW3vdNbm_M9j9IfUfThikuZknciWeH3SEVklt3iAwmOwZY0Cjc1r7iIAzoijNX71QrKwXiRNRu1HA0ESLGctnZ-7kXmjPJ_DfiKlXC32owwlDSeyOLxQRe6JmA90iYvwaby1j4UweQCPtv4GmqqBd6pgJ8j7fPk4TAP_VCbdxIUkbd9QR3fOAHv3lMBXy60J5DmoTZTjc_C6mB4Pa0xk5vx4LxVqlXf6dSu_xvUPcHt7xIde5kcKJNMce0e16cCkZWb58Orn37sLb37lOz_mj32dvhxvvh1ou9j19317abLzvQ2Dx-2Dx93axvNWufh893hi839jYfNE_efN9-BThngrlePjc1E7Ynp4QlVyJM07RmkpsYBllWrF9wU7MEcmlVVVTEcRWVkDWZMkkNT4yhRZkUccm4EX2jWMnp2WB0cHdgzgVjCkJcJmlkMNeqo0JW8PQuC0grSiOVkeeDsXawC-2D8d7CoRvowp9RLgbHEXZTm5eC0aXFZXMZgv2l4oq9634A2ey3HQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%B1%BB%E5%88%86%E6%95%B0%E9%98%B6%E9%9D%9E%E7%BA%BF%E6%80%A7%E5%BE%AE%E5%88%86%E5%8C%85%E5%90%AB%E5%88%9D%E5%80%BC%E9%97%AE%E9%A2%98%E7%9A%84%E5%8F%AF%E8%A7%A3%E6%80%A7&rft.jtitle=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%9D%A8%E5%B0%8F%E5%A8%9F&rft.au=%E9%9F%A9%E6%99%93%E7%8E%B2&rft.date=2017&rft.pub=%E8%A5%BF%E5%8C%97%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6+%E6%95%B0%E5%AD%A6%E4%B8%8E%E7%BB%9F%E8%AE%A1%E5%AD%A6%E9%99%A2%2C+%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E%2C+730070&rft.issn=1008-9497&rft.volume=44&rft.issue=3&rft.spage=287&rft.epage=291&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2017.03.007&rft.externalDocID=zjdxxb201703007 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb%2Fzjdxxb.jpg |