一类分数阶非线性微分包含初值问题的可解性

O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b], a>0,x(a)=x0的可解性.其中,F:J×R→2R是一个L1-Carathéodary函数,x(α)(t)表示x在t上的α阶导数,α∈(0,1].最后,分别给出了当集值映射F关于第二变量x次线性和至多线性增长时解的存在结果....

Full description

Saved in:
Bibliographic Details
Published in浙江大学学报(理学版) Vol. 44; no. 3; pp. 287 - 291
Main Authors 杨小娟, 韩晓玲
Format Journal Article
LanguageChinese
Published 西北师范大学 数学与统计学院, 甘肃 兰州, 730070 2017
Subjects
Online AccessGet full text
ISSN1008-9497
DOI10.3785/j.issn.1008-9497.2017.03.007

Cover

Abstract O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b], a>0,x(a)=x0的可解性.其中,F:J×R→2R是一个L1-Carathéodary函数,x(α)(t)表示x在t上的α阶导数,α∈(0,1].最后,分别给出了当集值映射F关于第二变量x次线性和至多线性增长时解的存在结果.
AbstractList O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b], a>0,x(a)=x0的可解性.其中,F:J×R→2R是一个L1-Carathéodary函数,x(α)(t)表示x在t上的α阶导数,α∈(0,1].最后,分别给出了当集值映射F关于第二变量x次线性和至多线性增长时解的存在结果.
Abstract_FL In this paper, using Bohnenblust-Karlin's fixed point theorem and combining the upper and lower solution method, we mainly study the solvability of Cauchy problem for nonlinear fractional differential inclusions{x(α)(t)∈F(t,x(t)), t∈J=[a,b],a>0,x(a)=x0,where F:J×R→2R is L1-Carathéodary function, x(α)(t) denotes the conformable fractional derivative of x at t of order α, α∈(0,1].By applying this theorem, we arrive at two existence results when the multi-valued nonlinearity F has sub-linear or linear growth about the second variable.
Author 杨小娟
韩晓玲
AuthorAffiliation 西北师范大学 数学与统计学院, 甘肃 兰州, 730070
AuthorAffiliation_xml – name: 西北师范大学 数学与统计学院, 甘肃 兰州, 730070
Author_FL HAN Xiaoling
YANG Xiaojuan
Author_FL_xml – sequence: 1
  fullname: YANG Xiaojuan
– sequence: 2
  fullname: HAN Xiaoling
Author_xml – sequence: 1
  fullname: 杨小娟
– sequence: 2
  fullname: 韩晓玲
BookMark eNrjYmDJy89LZWBQMTTQMza3MNXP0sssLs7TMzQwsNC1NLE01zMyMDTXMzDWMzAwZ2HghItzMPAWF2cmGRgYGpgaGllacDLYPNnR8Hzj7qcdbc-mbng5Y9vLufOe79r_rGH5033rgIJPe1qfTlj9tGPu04Y9L6eve7loxvNZLU_7179YvhiohoeBNS0xpziVF0pzM4S4uYY4e-j6-Lt7Ojv66CabWprrmpmZpZlYmKYaGhqbJ6eYJCaZpqaZGFlYGFmmpBibGxqmGCSbGRqkJhuZpZoapaYaJyUbJRkmm5immiemWpokmxpzM6hDjC1PzEtLzEuPz8ovLcoDWhhflZVSUZEE8qyBMdCrxgBtNmM7
ClassificationCodes O175.8
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3785/j.issn.1008-9497.2017.03.007
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL The solvability of Cauchy problem for nonlinear fractional differential inclusions
EndPage 291
ExternalDocumentID zjdxxb201703007
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (11561063)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-c597-666f485e1137cd4ab5ef428829dd3711d0c610ec26e52ee3bc2b1c45e7ae94c53
ISSN 1008-9497
IngestDate Thu May 29 04:06:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 微分包含
fractionl derivatives
分数阶导数
existence of solutions
Bohnenblust-Karlin's fixed point theorem
Bohnenblust-Karlin不动点定理
differential inclusions
可解性
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597-666f485e1137cd4ab5ef428829dd3711d0c610ec26e52ee3bc2b1c45e7ae94c53
PageCount 5
ParticipantIDs wanfang_journals_zjdxxb201703007
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 浙江大学学报(理学版)
PublicationTitle_FL Journal of Zhejiang University(Science Edition)
PublicationYear 2017
Publisher 西北师范大学 数学与统计学院, 甘肃 兰州, 730070
Publisher_xml – name: 西北师范大学 数学与统计学院, 甘肃 兰州, 730070
SSID ssib001051298
ssib051373732
ssib002258177
ssib004369313
ssib008679801
ssib002476865
ssib023167501
ssib059160192
ssib000948450
ssib002040240
ssib001104615
ssib000969734
ssib008143637
ssib006704891
ssj0002507526
Score 2.068945
Snippet O175.8; 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题{x(α)(t)∈F(t,x(t)), t∈J=[a,b],...
SourceID wanfang
SourceType Aggregation Database
StartPage 287
Title 一类分数阶非线性微分包含初值问题的可解性
URI https://d.wanfangdata.com.cn/periodical/zjdxxb201703007
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAMNQK4kUUFb_poXsqqUl2N7sLXjZtHkWopwq9lZdko3h4Qm2h9CA9qPQg6EUshXrQQw9C1YuIiv4Z0_r-hTO7abpU8YsHj3mb2ZnZmbzMzGZ2NwjGK1r0wc_XYW0SFTJeR6FidRlWFS7c7NeqqHC98-yNdOYmuz7P50eObHpVS8tLxWS5-st1Jf9jVWgDu-Iq2X-wbEcUGgAG-8I3WBi-_8rGJGckk1iskAuSxSTLSM6JhJaU5ClRnGRwSRElSZZaYJqo3CJrkvUQB_pqgb2ynOjc6w7AFJEcAQU4-5SBAgIRyaYsQWF7KaIT5AKUlSaSWZwe0cBCIn1NO15-NIyNGdBXFoiJ6mFHzVqR9DTRqQcABU00iNRD7tKxi1ppWxxBpLKXHE43zWH1ASjSjjVC6bATDKh3gKJQAm2lAZkUteRykiX-3IhbBGrvYzs6bjVp1aWcJqUVQFoF0p9HNOHZppPbGdLZJrOKkKhZHXs4CqUCRcO_wg6dWZVDtwT4TFgZ9qlmAg0NiHhQgDszpXU9WIiimKtW3vdNbm_M9j9IfUfThikuZknciWeH3SEVklt3iAwmOwZY0Cjc1r7iIAzoijNX71QrKwXiRNRu1HA0ESLGctnZ-7kXmjPJ_DfiKlXC32owwlDSeyOLxQRe6JmA90iYvwaby1j4UweQCPtv4GmqqBd6pgJ8j7fPk4TAP_VCbdxIUkbd9QR3fOAHv3lMBXy60J5DmoTZTjc_C6mB4Pa0xk5vx4LxVqlXf6dSu_xvUPcHt7xIde5kcKJNMce0e16cCkZWb58Orn37sLb37lOz_mj32dvhxvvh1ou9j19317abLzvQ2Dx-2Dx93axvNWufh893hi839jYfNE_efN9-BThngrlePjc1E7Ynp4QlVyJM07RmkpsYBllWrF9wU7MEcmlVVVTEcRWVkDWZMkkNT4yhRZkUccm4EX2jWMnp2WB0cHdgzgVjCkJcJmlkMNeqo0JW8PQuC0grSiOVkeeDsXawC-2D8d7CoRvowp9RLgbHEXZTm5eC0aXFZXMZgv2l4oq9634A2ey3HQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%B1%BB%E5%88%86%E6%95%B0%E9%98%B6%E9%9D%9E%E7%BA%BF%E6%80%A7%E5%BE%AE%E5%88%86%E5%8C%85%E5%90%AB%E5%88%9D%E5%80%BC%E9%97%AE%E9%A2%98%E7%9A%84%E5%8F%AF%E8%A7%A3%E6%80%A7&rft.jtitle=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%9D%A8%E5%B0%8F%E5%A8%9F&rft.au=%E9%9F%A9%E6%99%93%E7%8E%B2&rft.date=2017&rft.pub=%E8%A5%BF%E5%8C%97%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6+%E6%95%B0%E5%AD%A6%E4%B8%8E%E7%BB%9F%E8%AE%A1%E5%AD%A6%E9%99%A2%2C+%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E%2C+730070&rft.issn=1008-9497&rft.volume=44&rft.issue=3&rft.spage=287&rft.epage=291&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2017.03.007&rft.externalDocID=zjdxxb201703007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb%2Fzjdxxb.jpg