基于各向异性的区域土壤有机碳三维模拟与空间特征分析
为探索更加科学的土壤属性三维空间模拟方法,以各项同性三维普通克里格法为对比方法,采用均方根误差(root mean squared errors,RMSE)和标准化克里格方差(mean squared deviation ratio,MSDR)以及空间模拟方差图等,评价比较了各项同性和顾及各项异性的三维模拟方法的模拟效果。结果显示:三种方法模拟的土壤有机碳三维空间分布格局基本一致。随着土壤深度的不断增加,土壤有机碳含量较高的斑块逐渐减少,垂直方向上总体呈现出土体上部高下部低的格局。顾及各向异性能在一定程度上克服普通克里格法常出现的牛眼和趋中效应等缺陷问题。顾及各向异性基于Markov的同位置协...
Saved in:
Published in | 农业工程学报 Vol. 32; no. 16; pp. 115 - 124 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
安徽理工大学地球与环境学院,淮南,232001%安徽农业大学经济管理学院,合肥,230036%中国科学院合肥物质科学研究院,合肥,230031%中国科学院遥感与数字地球研究所数字地球重点实验室,北京,100094%中国农业大学资源与环境学院,北京,100193
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2016.16.017 |
Cover
Summary: | 为探索更加科学的土壤属性三维空间模拟方法,以各项同性三维普通克里格法为对比方法,采用均方根误差(root mean squared errors,RMSE)和标准化克里格方差(mean squared deviation ratio,MSDR)以及空间模拟方差图等,评价比较了各项同性和顾及各项异性的三维模拟方法的模拟效果。结果显示:三种方法模拟的土壤有机碳三维空间分布格局基本一致。随着土壤深度的不断增加,土壤有机碳含量较高的斑块逐渐减少,垂直方向上总体呈现出土体上部高下部低的格局。顾及各向异性能在一定程度上克服普通克里格法常出现的牛眼和趋中效应等缺陷问题。顾及各向异性基于Markov的同位置协同格里格法模拟效果最佳。该法的RMSE值最小(1.6215),相比于各项同性三维普通克里格法RMSE提高将近50%,特异值覆盖比率最大(76.15%),模拟精度最高,能够更好地突出波动性,体现特异值;该方法的MSDR最接近1(1.4409),且模拟的土壤有机碳质量分数总体方差均值最小(2.08)。研究成果将为区域土壤属性三维空间有效模拟提供方法参考。 |
---|---|
Bibliography: | 11-2047/S Zhang Shiwen,Ning Huirong,Gao Huiyi,Ye Huichun,Huang Yajie,Huang Yuanfang (1. College of Earth and Environmental Sciences, Anhui University of Science and Technology, Huaina 232001, China; 2. School of Economics and Management, Anhui Agriculture University, Hefei 230036; 3. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 4. Institute of Remote Sensing and Digital Earth Research, Chinese Academy of Sciences, Beo'ing 100094, China; 5. College of Resources and Environment, China Agricultural University, Beijing 100193, China) soils; organic carbon; models; anisotropy; three-dimensional simulation; spatial distribution characteristics The spatial variability of soil organic carbon(SOC) is one of the reasons leading to uncertainty in the estimation of carbon stocks. Simulation and analysis research of SOC spatial distribution, especially the three-dimensional(3D) spatial distribution characteristics, is of great significance for revealing the soil nutrient and polluta |
ISSN: | 1002-6819 |
DOI: | 10.11975/j.issn.1002-6819.2016.16.017 |