基于相关向量机的冬小麦蚜虫遥感预测

蚜虫的流行严重影响了冬小麦的产量。区域尺度上及时准确的预报冬小麦蚜害发生范围能为蚜害的有效预防提供基础信息,从而降低冬小麦产量的损失。该研究利用多时相的环境星CCD光学数据和IRS热红外数据,分别提取了冬小麦的长势因子,比值植被指数(ratio vegetation index,RVI)和归一化植被指数(normalized difference vegetation index,NDVI),以及生境因子,地表温度(land surface temperature,LST)和垂直干旱指数(perpendicular drought index,PDI),利用相关向量机(relevance ve...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 31; no. 6; pp. 201 - 207
Main Author 唐翠翠 黄文江 罗菊花 梁栋 赵晋陵 黄林生
Format Journal Article
LanguageChinese
Published 安徽大学电子信息工程学院,合肥 230039 2015
中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%中国科学院南京地理与湖泊研究所,南京,210008%安徽大学计算智能与信号处理教育部重点实验室,合肥 230039
安徽大学计算智能与信号处理教育部重点实验室,合肥 230039
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2015.06.027

Cover

More Information
Summary:蚜虫的流行严重影响了冬小麦的产量。区域尺度上及时准确的预报冬小麦蚜害发生范围能为蚜害的有效预防提供基础信息,从而降低冬小麦产量的损失。该研究利用多时相的环境星CCD光学数据和IRS热红外数据,分别提取了冬小麦的长势因子,比值植被指数(ratio vegetation index,RVI)和归一化植被指数(normalized difference vegetation index,NDVI),以及生境因子,地表温度(land surface temperature,LST)和垂直干旱指数(perpendicular drought index,PDI),利用相关向量机(relevance vector machine,RVM)、支持向量机(support vector machine,SVM)和逻辑回归(logistic regression,LR)方法建立了北京郊区冬小麦灌浆期蚜虫发生预测模型,并对比分析了3种模型预测精度。试验结果表明,RVM总体预测精度达到87.5%,优于SVM的79.2%和LR的75.0%。另外,RVM模型计算量较小,相比于SVM和LR模型,其预测时间可分别缩短7倍和60倍。较高预测精度和较小计算量的特性扩大了RVM在实际中的应用价值。
Bibliography:11-2047/S
Tang Cuicui, Huang Wenjiang, Luo Juhua, Liang Dong, Zhao Jinling, Huang Linsheng (1. Key Laboratory of lntelligent Computing & Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China; 2. School of Electronic and Information Engineering, Anhui University, Hefei 230039, China; 3. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beij'ing 100094, China; 4. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)
support vector machines; satellite imagery; remote sensing; wheat aphid; regional forecast; relevance vector machine; logistic regression
The prevalence of aphid in winter wheat field has a significant impact on the production of winter wheat. An effective and timely forewarning of the scope and severity of the disease at a regional scale will not only reduce yield losses but also alert the stakeholders to take effective preventive measures. Forecasting aphid occurren
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2015.06.027