基于变分的SAR图像目标特征增强方法

研究了SAR图像目标特征增强的变分方法.通过分析P-M扩散方程中的扩散系数,得出梯度(Canny)边缘检测算子对SAR图像的非恒虚警性使得滤波后图像的边缘变得模糊.而ROA算子能有效地检测出图像中的边缘,但较难检测出图像中的强散射点目标.基于SAR幅度图像中相干斑噪声的Rayle igh分布,从最大后验概率估计出发,结合ROA边缘检测图像以及SAR幅度信息来构造扩散系数,建立SAR图像目标特征增强的变分模型.实测SAR图像处理结果显示该方法在充分抑制均匀区域的相干斑噪声的同时能较好地保护并增强图像的边缘和强散射区域....

Full description

Saved in:
Bibliographic Details
Published inHong wai yu hao mi bo xue bao Vol. 29; no. 5; pp. 392 - 396
Main Author 黄石生 朱炬波 谢美华
Format Journal Article
LanguageChinese
Published 国防科技大学,理学院数学与系统科学系,湖南,长沙,410073 2010
Subjects
Online AccessGet full text
ISSN1001-9014

Cover

Loading…
More Information
Summary:研究了SAR图像目标特征增强的变分方法.通过分析P-M扩散方程中的扩散系数,得出梯度(Canny)边缘检测算子对SAR图像的非恒虚警性使得滤波后图像的边缘变得模糊.而ROA算子能有效地检测出图像中的边缘,但较难检测出图像中的强散射点目标.基于SAR幅度图像中相干斑噪声的Rayle igh分布,从最大后验概率估计出发,结合ROA边缘检测图像以及SAR幅度信息来构造扩散系数,建立SAR图像目标特征增强的变分模型.实测SAR图像处理结果显示该方法在充分抑制均匀区域的相干斑噪声的同时能较好地保护并增强图像的边缘和强散射区域.
Bibliography:feature enhancement
31-1577/TN
TN957
edge detection
SAR image; feature enhancement; diffusion equation; edge detection
diffusion equation
SAR image
ISSN:1001-9014