具有随机波动率的美式期权定价

为了更好地解决期权定价中存在的问题,研究了带有Heston随机波动率模型的期权定价问题,对美式期权的最佳实施边界及其提前执行的条件进行了分析和讨论。鉴于美式期权不存在解析定价公式,通过离散化参数空间将带有Heston随机波动率的美式期权价格所满足的随机偏微分方程转化为相应的差分方程,进而采用高阶紧式有限差分方法进行求解,得到了期权价格的数值解。通过数值实验对理论结果进行验证和模拟,对带有常数波动率和随机波动率条件下的两种最佳实施边界进行比较,发现最佳实施边界也具有随机波动性;在设定参数下对波动率的行为和性质进行分析,模拟出波动率曲线,并对高阶紧差分方法的计算结果进行比较,得到了期权的数值解,验...

Full description

Saved in:
Bibliographic Details
Published in河北科技大学学报 Vol. 38; no. 6; pp. 542 - 547
Main Author 李萍;李建辉
Format Journal Article
LanguageChinese
Published 西安工程大学理学院,陕西西安,710048%西京学院应用统计与理学系,陕西西安,710123 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 为了更好地解决期权定价中存在的问题,研究了带有Heston随机波动率模型的期权定价问题,对美式期权的最佳实施边界及其提前执行的条件进行了分析和讨论。鉴于美式期权不存在解析定价公式,通过离散化参数空间将带有Heston随机波动率的美式期权价格所满足的随机偏微分方程转化为相应的差分方程,进而采用高阶紧式有限差分方法进行求解,得到了期权价格的数值解。通过数值实验对理论结果进行验证和模拟,对带有常数波动率和随机波动率条件下的两种最佳实施边界进行比较,发现最佳实施边界也具有随机波动性;在设定参数下对波动率的行为和性质进行分析,模拟出波动率曲线,并对高阶紧差分方法的计算结果进行比较,得到了期权的数值解,验证了算法的有效性。此方法对解决随机波动率下的期权定价其他问题,如:随机波动率下的多标的资产期权定价、障碍期权定价的研究具有借鉴价值。
AbstractList 为了更好地解决期权定价中存在的问题,研究了带有Heston随机波动率模型的期权定价问题,对美式期权的最佳实施边界及其提前执行的条件进行了分析和讨论。鉴于美式期权不存在解析定价公式,通过离散化参数空间将带有Heston随机波动率的美式期权价格所满足的随机偏微分方程转化为相应的差分方程,进而采用高阶紧式有限差分方法进行求解,得到了期权价格的数值解。通过数值实验对理论结果进行验证和模拟,对带有常数波动率和随机波动率条件下的两种最佳实施边界进行比较,发现最佳实施边界也具有随机波动性;在设定参数下对波动率的行为和性质进行分析,模拟出波动率曲线,并对高阶紧差分方法的计算结果进行比较,得到了期权的数值解,验证了算法的有效性。此方法对解决随机波动率下的期权定价其他问题,如:随机波动率下的多标的资产期权定价、障碍期权定价的研究具有借鉴价值。
O211.9; 为了更好地解决期权定价中存在的问题,研究了带有Heston随机波动率模型的期权定价问题,对美式期权的最佳实施边界及其提前执行的条件进行了分析和讨论.鉴于美式期权不存在解析定价公式,通过离散化参数空间将带有Heston随机波动率的美式期权价格所满足的随机偏微分方程转化为相应的差分方程,进而采用高阶紧式有限差分方法进行求解,得到了期权价格的数值解.通过数值实验对理论结果进行验证和模拟,对带有常数波动率和随机波动率条件下的两种最佳实施边界进行比较,发现最佳实施边界也具有随机波动性;在设定参数下对波动率的行为和性质进行分析,模拟出波动率曲线,并对高阶紧差分方法的计算结果进行比较,得到了期权的数值解,验证了算法的有效性.此方法对解决随机波动率下的期权定价其他问题,如:随机波动率下的多标的资产期权定价、障碍期权定价的研究具有借鉴价值.
Abstract_FL In order to solve the problem of option pricing more perfectly,the option pricing problem with Heston stochastic volatility model is considered.The optimal implementation boundary of American option and the conditions for its early execu-tion are analyzed and discussed.In view of the fact that there is no analytical American option pricing formula,through the space discretization parameters,the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations,and then using high order compact finite difference method,numerical solutions are obtained for the option price.The numerical experiments are carried out to verify the theoreti-cal results and simulation.The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared,and the results show that the optimal exercise boundary also has stochastic volatility.Under the setting of parameters,the behavior and the nature of volatility are analyzed,the volatility curve is simulated,the calculation results of high order compact difference method are compared,and the numerical option solution is obtained,so that the method is verified.The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.
Author 李萍;李建辉
AuthorAffiliation 西安工程大学理学院,陕西西安710048;西京学院应用统计与理学系,陕西西安710123
AuthorAffiliation_xml – name: 西安工程大学理学院,陕西西安,710048%西京学院应用统计与理学系,陕西西安,710123
Author_FL LI Ping
LI Jianhui
Author_FL_xml – sequence: 1
  fullname: LI Ping
– sequence: 2
  fullname: LI Jianhui
Author_xml – sequence: 1
  fullname: 李萍;李建辉
BookMark eNotj7tKA0EARaeIYIzprW0EYeO8J1NK8AUBm_TL7jySjTqrG8SkVhEtYr9EBCsrG4uAil_j7uJfOBqrC5fDvZwVUHOpMwCsIdgSjLCtQXykWxgiMRlDDiGvgTqCsB0gRvEyaI5GSQwJp4SytqyDzeJ6Xs5uv_P7cvZWvj4Vd8_V9KbKr6rPafHhy8fy4bJ4yb_e56tgyUbHI9P8zwbo7e70OvtB93DvoLPdDRSTPFCYUqkNNdYoyyGF0CCiIcNKSxphqoSNmUCYsZhoI1GMPCO4lFYQbLElDbCxmL2InI1cPxym55nzh6E3G-rxr9qfmCfXF6QapK5_lnj2NEtOomwSckGkQJJQ8gMNDl8S
ClassificationCodes O211.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7535/hbkd.2017yx06006
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL American option pricing with stochastic volatility processes
EndPage 547
ExternalDocumentID hbkjdx201706006
673971934
GrantInformation_xml – fundername: 陕西省自然科学基金; 陕西省教育厅专项科研计划基金
  funderid: (2016JM1009); (15JK2183,15JK2134)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c596-c2449de4efecf60400e13d052cd94a24c7fb571255b3de91b10407699f732f2f3
ISSN 1008-1542
IngestDate Thu May 29 04:05:37 EDT 2025
Wed Feb 14 10:02:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 随机波动率
自由边界
American option
free boundary
有限差分法
金融市场
finance markets
美式期权
随机分析
finite difference method
stochastic analysis
stochastic volatility
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-c2449de4efecf60400e13d052cd94a24c7fb571255b3de91b10407699f732f2f3
Notes 13-1225/TS
PageCount 6
ParticipantIDs wanfang_journals_hbkjdx201706006
chongqing_primary_673971934
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 河北科技大学学报
PublicationTitleAlternate Journal of Hebei University of Science and Technology
PublicationTitle_FL Journal of Hebei University of Science and Technology
PublicationYear 2017
Publisher 西安工程大学理学院,陕西西安,710048%西京学院应用统计与理学系,陕西西安,710123
Publisher_xml – name: 西安工程大学理学院,陕西西安,710048%西京学院应用统计与理学系,陕西西安,710123
SSID ssib036434589
ssib002263455
ssib026596294
ssib051373553
ssib001105175
ssib038074668
ssib025702291
Score 2.0615265
Snippet ...
O211.9;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 542
SubjectTerms 有限差分法
美式期权
自由边界
金融市场
随机分析
随机波动率
Title 具有随机波动率的美式期权定价
URI http://lib.cqvip.com/qk/94553A/201706/673971934.html
https://d.wanfangdata.com.cn/periodical/hbkjdx201706006
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_W9uJFFBVrVfbgXITVZD4yM8fJbkoR68UVeluSSdKisPVjxdqriuih3peK4MmTFw8FFf8adxf_C99LsptYiqiX8PLmZd68vMnLbxLeG0KuCingvZAIeNK0BwuUxHVi7fKOz2KWuxzwXLF928btYP2uuLkpN1utp83sklFy3e0dm1fyP14FHvgVs2T_wbOLToEBNPgXjuBhOP6Vj2kkqZY0VDQKqOlSbWhkqLFUr1Wc0CIRcmpZIWyp1TRSVEdUKyRQWCARRsgEmbBbX25Kokc1xyYboXwkaBiC0iauLbQwVIRa4MKicwv9-9gEerVX9CCQiUSP2qBBFDJWzv0_Vwsj0tR4VPcoDxtMWQzBYisO3DQ_XpRZmlWkLerKSvFbKOa6MeWacXUul1Vn6rjoDysvLJSxndzHErC-erbrAZw7Umi7eHUHCmAYQFdxgiwzmI8Q0Zdtb-PWnRpJ-li8rIEkWcBFncKLe_8xVpcZYgHuYlSHNg5AT8i6kD-W9RdBvbKTPleA9Mr0j-pGlD_R0YgbR03Awh_bO8OthwBniuyyYR4PtxpAqH-anKpWMG1bTsczpLW3fZZcm7w8nB68_jl-Oz34Mv38YfLm42z_1Wz8YvZ9f_INmO-n755PPo1_fD08R_prUb-73qm24eg4MKrjAACaNBNZnrk8wJif-Tz1JHOpETETTuWJVICTZcLTzPgJLPA9FRiTK85ylvPzZGm4M8wukLbkuDkaBIHUgb2xnxgpMl_FzFMqFy5dIasLMwcPymorg4WvVki7MnxQPYOPB3Cj7qW7rCwC5QUX_9jBKjmJkuUHtEtkafToSXYZIOUouVK5_xcewleA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%B7%E6%9C%89%E9%9A%8F%E6%9C%BA%E6%B3%A2%E5%8A%A8%E7%8E%87%E7%9A%84%E7%BE%8E%E5%BC%8F%E6%9C%9F%E6%9D%83%E5%AE%9A%E4%BB%B7&rft.jtitle=%E6%B2%B3%E5%8C%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E8%90%8D%3B%E6%9D%8E%E5%BB%BA%E8%BE%89&rft.date=2017&rft.issn=1008-1542&rft.volume=38&rft.issue=6&rft.spage=542&rft.epage=547&rft_id=info:doi/10.7535%2Fhbkd.2017yx06006&rft.externalDocID=673971934
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94553A%2F94553A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhbkjdx%2Fhbkjdx.jpg