基于高光谱图像的茶树LAI与氮含量反演
为了对茶树进行实时、快速、无损的叶面积指数LAI和氮含量检测,该文以英红九号茶树为试验对象,利用便携式高光谱成像仪采集光谱数据、人工破坏性采摘叶片进行叶面积指数的计算以及传统化学方法测量叶片氮含量,比较不同高光谱特征变换形式与LAI和氮含量之间的相关性,并选择其中相关系数较高的高光谱特征变量作为自变量,分别采用线性、指数、对数和抛物线表达式建立LAI和氮含量的回归模型。结果显示:在多种高光谱数据变量建立的模型中,以绿峰反射率R_g为自变量的对数拟合模型最佳,其拟合样本的决定系数R~2和验证样本的均方根误差RMSE值分别为0.9和0.087 6。以植被指数变量VI_4(红边面积/黄边面积)与氮含...
Saved in:
Published in | 农业工程学报 Vol. 34; no. 3; pp. 195 - 201 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
华南农业大学工程学院,广州,510642%华南农业大学林学与风景园林学院,广州,510642%广东省农业科学院茶叶研究所,广州,510642%华南农业大学资源环境学院,广州,510642
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 为了对茶树进行实时、快速、无损的叶面积指数LAI和氮含量检测,该文以英红九号茶树为试验对象,利用便携式高光谱成像仪采集光谱数据、人工破坏性采摘叶片进行叶面积指数的计算以及传统化学方法测量叶片氮含量,比较不同高光谱特征变换形式与LAI和氮含量之间的相关性,并选择其中相关系数较高的高光谱特征变量作为自变量,分别采用线性、指数、对数和抛物线表达式建立LAI和氮含量的回归模型。结果显示:在多种高光谱数据变量建立的模型中,以绿峰反射率R_g为自变量的对数拟合模型最佳,其拟合样本的决定系数R~2和验证样本的均方根误差RMSE值分别为0.9和0.087 6。以植被指数变量VI_4(红边面积/黄边面积)与氮含量建立的指数模型为最佳建模效果,拟合样本的决定系数R~2和验证样本的均方根误差RMSE值分别为0.830 3和0.102 9,研究结果可为茶树叶面积指数LAI和营养成分的无损检测提供参考。 |
---|---|
Bibliography: | 11-2047/S crops; nitrogen; models; leaf area index; hyperspectral image; tea canopy Leaf area index(LAI), the total area of plant leaves on the unit land area, is an important vegetation characteristic of plant canopy, which can reflect the growth status of vegetation. The effective detection of leaf nitrogen, a significant chemical element which could promote the growth of plant leaves, is beneficial to the precision fertilization and nutrient management of tea plantations, while it is also of great importance to the improve of quality and yield of tea leaves. In order to improve the production of Yinhong 9 th tea, rational fertilization and protect the tea garden ecological environment, in this study, we used hyperspectral nondestructive testing technology to detect the LAI and nitrogen content with hyperspectral camera. Nitrogen is an important element that makes up tea chlorophyll, its content directly affects the synthesis of organic matter in tea tree, and it can affect leaf area index. Therefore, leaf ar |
ISSN: | 1002-6819 |
DOI: | 10.11975/j.issn.1002-6819.2018.03.026 |