基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型
为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项式平滑(Savitzky-Golay,SG)结合标准变量变换(standard normalized variable,SNV)对高光谱数据去噪平滑。利用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)进行特征波长选择,并与逐步回归分析(stepwise regression,SR)及连续投影算法(successi...
Saved in:
Published in | 农业工程学报 Vol. 33; no. 5; pp. 178 - 184 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
江苏大学电气信息工程学院,镇江,212013%江苏大学现代农业装备与技术教育部重点实验室,镇江,212013
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2017.05.026 |
Cover
Summary: | 为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项式平滑(Savitzky-Golay,SG)结合标准变量变换(standard normalized variable,SNV)对高光谱数据去噪平滑。利用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)进行特征波长选择,并与逐步回归分析(stepwise regression,SR)及连续投影算法(successive projections algorithm,SPA)进行比较,利用支持向量回归机(support vector regression,SVR)分别建立油麦菜叶片全光谱数据、3种特征光谱数据与干基含水率的关系模型。结果表明,基于竞争性自适应加权算法波长选择的支持向量回归模型(CARS-SVR)效果最佳,但预测精度尚不够理想,故引入人工蜂群算法(artificial bee colony,ABC)优化模型的参数惩罚因子和核参数。最终,经人工蜂群算法优化后的模型(CARS-ABC-SVR)的预测集决定系数R2和均方根误差RMSE分别为0.9214和2.95%。因此,利用高光谱技术结合CARS-ABC-SVR模型预测油麦菜叶片水分含量是可行的。 |
---|---|
Bibliography: | 11-2047/S moisture; algorithms; models; hyperspectral; leaf-used lettuce; competitive adaptive reweighted sampling algorithm; artificial bee colony algorithm In order to realize more reasonably irrigation management during the growth of leaf-used lettuce,a new method for accurately,rapidly and effectively detecting leaf-used lettuce moisture based on hyperspectral technology was investigated in this study.Leaf-used lettuces of 5 different water stress levels were adopted as experimental objects.In the first group,sufficient water irrigation was maintained during the growth period of leaf-used lettuces,and the amount of water irrigated in the second,third,fourth and fifth groups decreased in turn according to the gradient.Firstly,hyperspectral images of leaf-used lettuce samples were acquired by using the hyperspectral image acquisition system,then the water contents of all leaves were measured by the drying method and the dry-basis moisture content was calculated according to formula.Secondly,the hyperspectral |
ISSN: | 1002-6819 |
DOI: | 10.11975/j.issn.1002-6819.2017.05.026 |