Glyoxal Yield from Isoprene Oxidation and Relation to Formaldehyde: Chemical Mechanism, Constraints from SENEX Aircraft Observations, and Interpretation of OMI Satellite Data

Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds(VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the worl...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 17; no. 14; pp. 8725 - 8738
Main Authors Miller, Christopher Chan, Jacob, Daniel J., Marais, Eloise A., Yu, Karen, Travis, Katherine R., Kim, Patrick S., Fisher, Jenny A., Zhu, Lei, Wolfe, Glenn M., Hanisco, Thomas F., Keutsch, Frank N., Kaiser, Jennifer, Min, Kyung-Eun, Brown, Steven S., Washenfelder, Rebecca A., Gonzalez Abad, Gonzalo, Chance, Kelly
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center Copernicus Publications 18.07.2017
Copernicus GmbH
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds(VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the Southeast Nexus (SENEX) campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NO (sub x) triple bonded to NO plus NO2), the behavior of the CHOCHO-HCHO relationship, the quality of Ozone Monitoring Instrument (OMI) CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOSChem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NO (sub x) conditions following the isomerization of the isoprene peroxy radical (ISOPO2).The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NO (sub x) conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NO (sub x) conditions apparent in the SENEX data.
Bibliography:GSFC
Goddard Space Flight Center
GSFC-E-DAA-TN47279
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-17-8725-2017