Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation

This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perfor...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 55; no. 3; pp. 954 - 967
Main Authors Ashburner, John, Friston, Karl J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2011
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2010.12.049

Cover

Loading…
Abstract This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss–Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.
AbstractList This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss–Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.
This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss–Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.
This paper presents a nonlinear image registration algorithm based on the setting ofLarge Deformation Diffeomorphic Metric Mapping(LDDMM), but with a more efficient optimisation scheme -- both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss-Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.
This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme--both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss-Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme--both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss-Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.
Author Ashburner, John
Friston, Karl J.
AuthorAffiliation Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
AuthorAffiliation_xml – name: Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
Author_xml – sequence: 1
  givenname: John
  surname: Ashburner
  fullname: Ashburner, John
  email: john@fil.ion.ucl.ac.uk
– sequence: 2
  givenname: Karl J.
  surname: Friston
  fullname: Friston, Karl J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21216294$$D View this record in MEDLINE/PubMed
BookMark eNqNUsuO1DAQjNAi9gG_gEbiwCmD23YS-4KABRakFUgIzpZjdzIeMvZgJ4v2xj_wh3wJzj5YmAtzsuWuLldX13Fx4IPHolgAWQKB-tl66XGKwW10j0tK5me6JFzeK46AyKqUVUMP5nvFSgEgD4vjlNaEEAlcPCgOKVCoqeRHxafXruswbELcrpxZROxdGqMeXfCLKTnfL3oMFlOupVUI4_yivV2c6SmlXz9-fsDvY4aG7eg2Ll31PSzud3pI-OjmPCm-vH3z-fRdef7x7P3py_PSVLIaSwNIKGdoO8EENNRAa1qqW8taAYx2wuraEGt43TDBwVqKogbKaZMFs1qyk-L5Ne92ajdoDfosfFDbmG2Jlypop_6teLdSfbhQjNLsDM0ET28IYvg2YRpVHsHgMGiPYUpKAqlZBUD-ixRVJQkXFDLyyQ5yHabosw8Kas4bQUgzS3_8t_Q_mm_3cjebiSGliJ0ybrxyN0_iBgVEzUFQa3UXBDUHQQFVOQiZQOwQ3P6xR-ur61bMy7twGFUyDr1B6yKaUdng9iF5sUNiBued0cNXvNyP4jfGnOy8
CitedBy_id crossref_primary_10_1080_23273798_2020_1854793
crossref_primary_10_1113_JP282289
crossref_primary_10_1109_TIP_2020_3013169
crossref_primary_10_1016_j_bbi_2021_09_007
crossref_primary_10_1093_humrep_deae207
crossref_primary_10_1007_s11063_018_9808_6
crossref_primary_10_1007_s11263_018_1099_x
crossref_primary_10_1016_j_neuroimage_2022_119529
crossref_primary_10_1016_j_neuroimage_2011_09_002
crossref_primary_10_1038_s41591_022_01942_9
crossref_primary_10_3390_e22101100
crossref_primary_10_1016_j_mri_2020_01_016
crossref_primary_10_3389_fneur_2019_01329
crossref_primary_10_1111_ejn_16612
crossref_primary_10_1002_hbm_23929
crossref_primary_10_1093_brain_awad327
crossref_primary_10_1007_s00702_021_02434_9
crossref_primary_10_1093_brain_awy206
crossref_primary_10_3389_fradi_2022_929533
crossref_primary_10_1007_s12264_020_00520_8
crossref_primary_10_1016_j_neuroimage_2011_10_025
crossref_primary_10_1016_j_neuroimage_2022_119196
crossref_primary_10_1371_journal_pone_0114478
crossref_primary_10_1016_j_jneumeth_2019_05_003
crossref_primary_10_1038_s41598_022_22599_x
crossref_primary_10_1002_hbm_26632
crossref_primary_10_1038_tp_2016_267
crossref_primary_10_1093_braincomms_fcae071
crossref_primary_10_1002_acn3_52164
crossref_primary_10_1371_journal_pone_0147836
crossref_primary_10_7554_eLife_60136
crossref_primary_10_1089_neu_2017_5522
crossref_primary_10_1016_j_nbd_2020_104831
crossref_primary_10_1016_j_nbd_2024_106693
crossref_primary_10_1001_jamaneurol_2024_2213
crossref_primary_10_1137_18M1207818
crossref_primary_10_1093_braincomms_fcab241
crossref_primary_10_1002_hbm_26624
crossref_primary_10_1137_15M1006726
crossref_primary_10_1002_hbm_24325
crossref_primary_10_1007_s11357_023_00934_y
crossref_primary_10_1093_cercor_bhae488
crossref_primary_10_1186_s13195_023_01185_x
crossref_primary_10_1016_j_jocs_2018_11_011
crossref_primary_10_1016_j_media_2020_101792
crossref_primary_10_3389_fnagi_2022_981451
crossref_primary_10_1016_j_bspc_2024_107085
crossref_primary_10_1038_jcbfm_2015_113
crossref_primary_10_1002_hbm_22860
crossref_primary_10_1016_j_nicl_2019_102033
crossref_primary_10_46471_gigabyte_113
crossref_primary_10_1016_j_neuroimage_2023_120134
crossref_primary_10_1007_s11263_015_0802_4
crossref_primary_10_1038_s44271_024_00157_7
crossref_primary_10_1016_j_neuroimage_2023_119947
crossref_primary_10_1016_j_nicl_2020_102369
crossref_primary_10_1016_j_jad_2017_11_024
crossref_primary_10_1016_j_nicl_2022_103144
crossref_primary_10_1093_psyrad_kkad017
crossref_primary_10_1038_s41386_025_02075_6
crossref_primary_10_1016_j_nicl_2015_07_002
crossref_primary_10_1109_JBHI_2018_2815346
crossref_primary_10_2139_ssrn_4051521
crossref_primary_10_1002_ana_26199
crossref_primary_10_1016_j_jneumeth_2021_109107
crossref_primary_10_1002_hbm_22854
crossref_primary_10_1038_s41593_019_0394_3
crossref_primary_10_1093_cercor_bhae016
crossref_primary_10_3389_fneur_2020_00241
crossref_primary_10_1093_cercor_bhad295
crossref_primary_10_1137_16M1070475
crossref_primary_10_1016_j_dadm_2018_08_012
crossref_primary_10_1016_j_neuroimage_2022_119655
crossref_primary_10_1186_s13195_024_01613_6
crossref_primary_10_1002_acn3_52067
crossref_primary_10_1016_j_jad_2023_04_102
crossref_primary_10_1016_j_nicl_2014_05_009
crossref_primary_10_1016_j_nicl_2025_103751
crossref_primary_10_1002_gamm_201410008
crossref_primary_10_1111_nyas_14971
crossref_primary_10_1002_hbm_26097
crossref_primary_10_1038_s41591_024_03306_x
crossref_primary_10_1016_j_neuroimage_2018_05_065
crossref_primary_10_1371_journal_pone_0172432
crossref_primary_10_1016_j_jalz_2019_09_004
crossref_primary_10_1212_WNL_0000000000209832
crossref_primary_10_1016_j_neuroimage_2024_120834
crossref_primary_10_1093_cercor_bhae269
crossref_primary_10_1212_WNL_0000000000200582
crossref_primary_10_3389_fneur_2019_01097
crossref_primary_10_1002_hbm_25870
crossref_primary_10_1111_exsy_13739
crossref_primary_10_2463_mrms_rev_2021_0096
crossref_primary_10_1038_s41598_019_45859_9
crossref_primary_10_1093_cercor_bhad221
crossref_primary_10_3389_fncom_2017_00005
crossref_primary_10_1007_s00415_024_12648_y
crossref_primary_10_1016_j_nicl_2019_101888
crossref_primary_10_1016_j_neuroimage_2012_07_033
crossref_primary_10_1038_s41591_024_02977_w
crossref_primary_10_1016_j_nicl_2018_06_023
crossref_primary_10_3233_JAD_231183
crossref_primary_10_3389_fncom_2014_00122
crossref_primary_10_3389_fpsyt_2021_795299
crossref_primary_10_1016_j_neuroimage_2021_118231
crossref_primary_10_1016_j_neuroimage_2017_02_054
crossref_primary_10_1162_imag_a_00288
crossref_primary_10_1038_s41591_020_0762_2
crossref_primary_10_1016_j_dam_2016_05_005
crossref_primary_10_1002_mp_15011
crossref_primary_10_1016_j_neuroimage_2012_01_024
crossref_primary_10_1016_j_neuroscience_2021_03_018
crossref_primary_10_1093_cercor_bhad470
crossref_primary_10_1016_j_neuroimage_2018_09_061
crossref_primary_10_2463_mrms_mp_2024_0003
crossref_primary_10_1016_j_brainres_2023_148278
crossref_primary_10_3390_brainsci13121677
crossref_primary_10_1002_alz_13750
crossref_primary_10_1088_1361_6560_ada516
crossref_primary_10_3389_fnagi_2023_1191991
crossref_primary_10_1192_bjp_2018_255
crossref_primary_10_1016_j_jbi_2012_02_013
crossref_primary_10_1002_hbm_25737
crossref_primary_10_1002_hbm_26705
crossref_primary_10_1038_s41598_023_28673_2
crossref_primary_10_1016_j_bspc_2019_101562
crossref_primary_10_1016_j_media_2023_102913
crossref_primary_10_1093_brain_aww009
crossref_primary_10_1007_s00234_024_03497_7
crossref_primary_10_1016_j_neuroimage_2017_05_015
crossref_primary_10_1212_WNL_0000000000009451
crossref_primary_10_1007_s11682_021_00578_6
crossref_primary_10_1109_TMM_2013_2244869
crossref_primary_10_1093_braincomms_fcac228
crossref_primary_10_1017_S0033291715002767
crossref_primary_10_1038_s41598_019_48164_7
crossref_primary_10_1016_j_neuroimage_2016_10_038
crossref_primary_10_1016_j_neuroimage_2016_08_028
crossref_primary_10_1186_s12987_024_00611_y
crossref_primary_10_1016_j_ynirp_2023_100181
crossref_primary_10_1097_j_pain_0000000000003351
crossref_primary_10_1097_RLU_0000000000005141
crossref_primary_10_2196_45815
crossref_primary_10_1016_j_neuroimage_2018_08_068
crossref_primary_10_1016_j_parkreldis_2024_107251
crossref_primary_10_1212_WNL_0000000000207200
crossref_primary_10_1002_brb3_1481
crossref_primary_10_1093_schbul_sbw080
crossref_primary_10_1016_j_nicl_2017_05_026
crossref_primary_10_1177_13524585241280842
crossref_primary_10_1136_jnnp_2017_317007
crossref_primary_10_1016_j_neuroimage_2022_118887
crossref_primary_10_52294_001c_116785
crossref_primary_10_1088_1361_6560_aa925a
crossref_primary_10_1016_j_media_2019_04_008
crossref_primary_10_3390_anatomia2040029
crossref_primary_10_1002_jmri_28098
crossref_primary_10_3389_fnins_2020_00585
crossref_primary_10_1016_j_pnpbp_2021_110325
crossref_primary_10_1007_s10851_021_01016_4
crossref_primary_10_1093_brain_awac126
crossref_primary_10_1111_jon_12834
crossref_primary_10_1212_WNL_0000000000200750
crossref_primary_10_1038_s41598_023_47753_x
crossref_primary_10_1088_1361_6560_aaf598
crossref_primary_10_2174_0115672050330903240919074725
crossref_primary_10_1142_S0129065722500198
crossref_primary_10_1007_s12021_019_09438_7
crossref_primary_10_1016_j_dib_2017_12_001
crossref_primary_10_1016_j_neulet_2012_10_038
crossref_primary_10_1016_j_neuroimage_2017_07_008
crossref_primary_10_3389_fams_2021_718607
crossref_primary_10_1002_hbm_24613
crossref_primary_10_1212_WNL_0000000000200884
crossref_primary_10_1007_s11768_025_00244_y
crossref_primary_10_1212_WNL_0000000000011749
crossref_primary_10_1007_s12671_020_01502_7
crossref_primary_10_1016_j_jpdc_2020_11_006
crossref_primary_10_1007_s00429_019_01893_x
crossref_primary_10_1002_jmri_25283
crossref_primary_10_1016_j_neuro_2024_06_009
crossref_primary_10_1093_neuros_nyz544
crossref_primary_10_1016_j_pnpbp_2024_111024
crossref_primary_10_1016_j_jcp_2023_112463
crossref_primary_10_1007_s00429_022_02529_3
crossref_primary_10_1137_140984002
crossref_primary_10_1002_hbm_26388
crossref_primary_10_1002_advs_202400061
crossref_primary_10_1093_cercor_bhz131
crossref_primary_10_1016_j_nicl_2020_102523
crossref_primary_10_1093_psyrad_kkab001
crossref_primary_10_1002_alz_14299
crossref_primary_10_1002_mds_29306
crossref_primary_10_1016_j_pscychresns_2024_111910
crossref_primary_10_1007_s00415_024_12762_x
crossref_primary_10_1016_j_neuropsychologia_2020_107411
crossref_primary_10_1007_s00415_020_09957_3
crossref_primary_10_1177_26331055231225657
crossref_primary_10_1093_brain_awae356
crossref_primary_10_1097_PSY_0000000000000913
crossref_primary_10_1080_23273798_2015_1068944
crossref_primary_10_1001_jamanetworkopen_2024_4266
crossref_primary_10_1016_j_media_2014_06_012
crossref_primary_10_1038_s41467_024_48490_z
crossref_primary_10_1016_j_ebr_2023_100643
crossref_primary_10_3233_JAD_190715
crossref_primary_10_1002_aisy_201900048
crossref_primary_10_1093_braincomms_fcae334
crossref_primary_10_1093_cercor_bhad338
crossref_primary_10_1016_j_neuroimage_2020_117031
crossref_primary_10_1016_j_jad_2024_01_221
crossref_primary_10_1016_j_neurobiolaging_2021_02_002
crossref_primary_10_1016_j_parkreldis_2021_07_024
crossref_primary_10_1137_17M1114132
crossref_primary_10_1007_s11081_018_9390_9
crossref_primary_10_1093_cercor_bhz278
crossref_primary_10_1038_s41467_024_53148_x
crossref_primary_10_1016_j_neuroimage_2017_10_060
crossref_primary_10_1016_j_concog_2021_103132
crossref_primary_10_1186_s13195_024_01603_8
crossref_primary_10_1007_s12021_013_9178_1
crossref_primary_10_1093_brain_awy122
crossref_primary_10_1016_j_nicl_2014_02_002
crossref_primary_10_1017_S0954579418000342
crossref_primary_10_1111_jon_12909
crossref_primary_10_1016_j_ebr_2019_100341
crossref_primary_10_1016_j_nicl_2013_04_017
crossref_primary_10_1371_journal_pone_0036851
crossref_primary_10_1016_j_cortex_2020_03_028
crossref_primary_10_1016_j_jpain_2024_01_336
crossref_primary_10_1002_ana_26516
crossref_primary_10_1073_pnas_2306029121
crossref_primary_10_1038_s41598_022_05407_4
crossref_primary_10_1109_TMI_2016_2576360
crossref_primary_10_1016_j_media_2015_08_006
crossref_primary_10_1016_j_nicl_2020_102338
crossref_primary_10_3390_brainsci14030226
crossref_primary_10_1002_mp_16625
crossref_primary_10_1016_j_neuroimage_2020_116962
crossref_primary_10_1177_13872877241284211
crossref_primary_10_3389_fnagi_2017_00267
crossref_primary_10_1016_j_nicl_2021_102640
crossref_primary_10_1016_j_bpsc_2021_10_008
crossref_primary_10_1172_jci_insight_142514
crossref_primary_10_1016_j_mri_2022_10_006
crossref_primary_10_1016_j_neuroimage_2019_116044
crossref_primary_10_1038_s41467_022_34068_0
crossref_primary_10_2463_mrms_mp_2023_0093
crossref_primary_10_1016_j_bspc_2022_104090
crossref_primary_10_3389_fnimg_2022_970385
crossref_primary_10_1162_imag_a_00306
crossref_primary_10_1017_S0033291719002459
crossref_primary_10_1016_j_nicl_2019_102114
crossref_primary_10_1137_15M1010919
crossref_primary_10_3389_fneur_2021_724680
crossref_primary_10_3390_ijms252413412
crossref_primary_10_1016_j_neuroimage_2023_120292
crossref_primary_10_1093_scan_nsab049
crossref_primary_10_1111_cgf_13785
crossref_primary_10_1002_dad2_12181
crossref_primary_10_1017_S0033291719001120
crossref_primary_10_1016_j_neuroimage_2020_116831
crossref_primary_10_1186_1471_2490_14_68
crossref_primary_10_1002_acn3_51290
crossref_primary_10_1109_TMI_2013_2265603
crossref_primary_10_1016_j_neuroimage_2018_05_018
crossref_primary_10_1111_jmi_12594
crossref_primary_10_1016_j_apm_2024_02_033
crossref_primary_10_1038_s41597_022_01163_2
crossref_primary_10_1016_j_nicl_2018_09_013
crossref_primary_10_1016_j_neuroimage_2015_06_094
crossref_primary_10_3233_JAD_215316
crossref_primary_10_1007_s10851_013_0479_7
crossref_primary_10_1109_TMI_2016_2554554
crossref_primary_10_1016_j_neuroimage_2022_119571
crossref_primary_10_1016_j_cortex_2024_09_018
crossref_primary_10_1016_j_neurobiolaging_2017_10_008
crossref_primary_10_1177_02698811221117523
crossref_primary_10_1212_WNL_0000000000200667
crossref_primary_10_1016_j_nicl_2017_07_018
crossref_primary_10_1177_0271678X241270528
crossref_primary_10_1186_s13195_023_01243_4
crossref_primary_10_1016_j_neuroimage_2015_09_033
crossref_primary_10_1126_sciadv_ado2733
crossref_primary_10_3389_fnagi_2022_851788
crossref_primary_10_1002_mp_15678
crossref_primary_10_1007_s12028_024_02053_8
crossref_primary_10_1016_j_neuroimage_2013_07_084
crossref_primary_10_1007_s00429_021_02429_y
crossref_primary_10_1002_jmri_28376
crossref_primary_10_1093_braincomms_fcae378
crossref_primary_10_1093_gigascience_giae049
crossref_primary_10_1007_s13365_022_01101_3
crossref_primary_10_1016_j_neurobiolaging_2020_10_006
crossref_primary_10_3389_fneur_2024_1267349
Cites_doi 10.1007/978-3-540-73273-0_33
10.1093/cercor/bhm225
10.1007/s10851-008-0135-9
10.1016/j.neuroimage.2010.05.075
10.1007/s10851-008-0074-5
10.1016/j.neuroimage.2010.01.091
10.1023/B:VISI.0000043755.93987.aa
10.1016/j.neuroimage.2008.12.037
10.1097/00004728-199507000-00022
10.1016/j.neuroimage.2005.02.018
10.1016/j.neuroimage.2008.10.050
10.1007/s10851-005-3624-0
10.1016/j.neuroimage.2006.08.030
10.1016/j.neuroimage.2007.07.007
10.1016/j.neuroimage.2007.09.031
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2008.12.008
10.1109/83.536892
10.1016/j.media.2007.06.004
10.1109/TMI.2006.887380
10.1016/j.neuroimage.2010.03.059
10.1090/S0033-569X-07-01027-5
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Apr 1, 2011
2011 Elsevier Inc. 2011 Elsevier Inc.
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Apr 1, 2011
– notice: 2011 Elsevier Inc. 2011 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2010.12.049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Collection (Proquest)
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList

ProQuest One Psychology

Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 967
ExternalDocumentID PMC3221052
3556011031
21216294
10_1016_j_neuroimage_2010_12_049
S1053811910016496
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 088130
– fundername: Wellcome Trust
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c595t-c1e0243edf838172c1bcb2abd3b8132f8da6c0dc4673841dd2e8612427ffe3693
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:02:52 EDT 2025
Mon Jul 21 11:10:57 EDT 2025
Thu Jul 10 17:43:29 EDT 2025
Sat Aug 23 12:26:43 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Tue Jul 01 02:14:40 EDT 2025
Thu Apr 24 23:44:17 EDT 2025
Fri Feb 23 02:20:27 EST 2024
Tue Aug 26 16:36:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Geodesic shooting
Gauss–Newton optimisation
Diffeomorphisms
Shape modelling
Nonlinear registration
Language English
License http://creativecommons.org/licenses/by/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
Open Access under CC BY 3.0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-c1e0243edf838172c1bcb2abd3b8132f8da6c0dc4673841dd2e8612427ffe3693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811910016496
PMID 21216294
PQID 1644780079
PQPubID 2031077
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3221052
proquest_miscellaneous_910635110
proquest_miscellaneous_855904821
proquest_journals_1644780079
pubmed_primary_21216294
crossref_citationtrail_10_1016_j_neuroimage_2010_12_049
crossref_primary_10_1016_j_neuroimage_2010_12_049
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_12_049
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_12_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
2011-04-00
2011-Apr-01
20110401
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2011
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
References Yeo, Sabuncu, Mohlberg, Amunts, Zilles, Golland, Fischl (bb0150) 2007
Arsigny, Commowick, Pennec, Ayache (bb0015) 2006
Klein, Ghosh, Avants, Yeo, Fischl, Ardekani, Gee, Mann, Parsey (bb0105) 2010; 510
Cotter, C.J., Holm, D.D. Singular solutions, momentum maps and computational anatomy. Arxiv preprint nlin.SI/0605020, 2006.
Ashburner, Friston (bb0035) 2009; 450
Moler, Van Loan (bb0130) 2003
Kriegl, Michor (bb0110) 1997
Modersitzki (bb0125) 2009
Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bb0140) 2008; 390
Christensen, Rabbitt, Miller, Joshi, Grenander, Coogan, Van Essen (bb0060) 1995
Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier (bb0100) 2009; 460
Ashburner (bb0025) 2007; 380
Rueckert, Aljabar, Heckemann, Hajnal, Hammers (bb0135) 2006
Fischl, Rajendran, Busa, Augustinack, Hinds, Yeo, Mohlberg, Amunts, Zilles (bb0075) 2008; 18
Ashburner, Friston (bb0030) 2005; 260
Avants, Epstein, Grossman, Gee (bb0045) 2008; 120
Ghosh, S.S., Kakunoori, S., Augustinack, J., Nieto-Castanon, A., Kovelman, I., Gaab, N., Christodoulou, J.A., Triantafyllou, C., Gabrieli, J.D.E., Fischl, B., 2010. Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4-to-11 years of age. NeuroImage 53 (1), 85–93.
Grenander, Miller (bb0085) 2007
Jenkinson, Bannister, Brady, Smith (bb0095) 2002; 170
Beg, Miller, Trouvé, Younes (bb0050) 2005; 610
Younes, Qiu, Winslow, Miller (bb0165) 2008; 320
Ardekani, Braun, Hutton, Kanno, Iida (bb0010) 1995; 190
Arsigny, Commowick, Ayache, Pennec (bb0020) 2009; 330
Ashburner, J., Klöppel, S., 2010. Multivariate models of inter-subject anatomical variability. NeuroImage.
Younes, Arrate, Miller (bb0170) 2009; 450
Christensen, Rabbitt, Miller (bb0065) 1996; 50
Wang, Beg, Ratnanather, Ceritoglu, Younes, Morris, Csernansky, Miller (bb0145) 2007; 260
Holm, Schmah, Stoica (bb0090) 2009
Younes (bb0160) 2010
Chiang, Dutton, Hayashi, Lopez, Aizenstein, Toga, Becker, Thompson (bb0055) 2007; 340
Miller, Trouvé, Younes (bb0120) 2006; 240
Marsland, McLachlan (bb0115) 2007; 4584
Younes (bb0155) 2007; 650
Andersson, Jenkinson, Smith (bb0005) 2007
Ashburner (10.1016/j.neuroimage.2010.12.049_bb0025) 2007; 380
Modersitzki (10.1016/j.neuroimage.2010.12.049_bb0125) 2009
Christensen (10.1016/j.neuroimage.2010.12.049_bb0060) 1995
Klein (10.1016/j.neuroimage.2010.12.049_bb0100) 2009; 460
Marsland (10.1016/j.neuroimage.2010.12.049_bb0115) 2007; 4584
Wang (10.1016/j.neuroimage.2010.12.049_bb0145) 2007; 260
10.1016/j.neuroimage.2010.12.049_bb0080
Moler (10.1016/j.neuroimage.2010.12.049_bb0130) 2003
Ashburner (10.1016/j.neuroimage.2010.12.049_bb0035) 2009; 450
Arsigny (10.1016/j.neuroimage.2010.12.049_bb0015) 2006
Younes (10.1016/j.neuroimage.2010.12.049_bb0165) 2008; 320
Arsigny (10.1016/j.neuroimage.2010.12.049_bb0020) 2009; 330
Rueckert (10.1016/j.neuroimage.2010.12.049_bb0135) 2006
10.1016/j.neuroimage.2010.12.049_bb0040
Beg (10.1016/j.neuroimage.2010.12.049_bb0050) 2005; 610
Younes (10.1016/j.neuroimage.2010.12.049_bb0155) 2007; 650
Ashburner (10.1016/j.neuroimage.2010.12.049_bb0030) 2005; 260
Fischl (10.1016/j.neuroimage.2010.12.049_bb0075) 2008; 18
Jenkinson (10.1016/j.neuroimage.2010.12.049_bb0095) 2002; 170
Ardekani (10.1016/j.neuroimage.2010.12.049_bb0010) 1995; 190
Holm (10.1016/j.neuroimage.2010.12.049_bb0090) 2009
10.1016/j.neuroimage.2010.12.049_bb0070
Younes (10.1016/j.neuroimage.2010.12.049_bb0160) 2010
Shattuck (10.1016/j.neuroimage.2010.12.049_bb0140) 2008; 390
Younes (10.1016/j.neuroimage.2010.12.049_bb0170) 2009; 450
Kriegl (10.1016/j.neuroimage.2010.12.049_bb0110) 1997
Andersson (10.1016/j.neuroimage.2010.12.049_bb0005) 2007
Grenander (10.1016/j.neuroimage.2010.12.049_bb0085) 2007
Miller (10.1016/j.neuroimage.2010.12.049_bb0120) 2006; 240
Christensen (10.1016/j.neuroimage.2010.12.049_bb0065) 1996; 50
Chiang (10.1016/j.neuroimage.2010.12.049_bb0055) 2007; 340
Klein (10.1016/j.neuroimage.2010.12.049_bb0105) 2010; 510
Yeo (10.1016/j.neuroimage.2010.12.049_bb0150) 2007
Avants (10.1016/j.neuroimage.2010.12.049_bb0045) 2008; 120
18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80
17659998 - Med Image Anal. 2008 Feb;12(1):26-41
17427733 - IEEE Trans Med Imaging. 2007 Apr;26(4):462-70
20123029 - Neuroimage. 2010 May 15;51(1):214-20
19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
12377157 - Neuroimage. 2002 Oct;17(2):825-41
17354979 - Med Image Comput Comput Assist Interv. 2006;9(Pt 1):924-31
7622696 - J Comput Assist Tomogr. 1995 Jul-Aug;19(4):615-23
26082678 - Proc IEEE Int Conf Comput Vis. 2007 Oct;2007:null
19059343 - Neuroimage. 2009 Mar;45(1 Suppl):S40-50
18037310 - Neuroimage. 2008 Feb 1;39(3):1064-80
17035049 - Neuroimage. 2007 Jan 1;34(1):44-60
17633716 - Inf Process Med Imaging. 2007;20:396-407
20613972 - J Math Imaging Vis. 2006 Jan 31;24(2):209-228
17354834 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):702-9
15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
19809583 - J Math Imaging Vis. 2008 Sep 1;32(1):41-56
20347998 - Neuroimage. 2011 May 15;56(2):422-39
18290061 - IEEE Trans Image Process. 1996;5(10):1435-47
20621657 - Neuroimage. 2010 Oct 15;53(1):85-93
19146961 - Neuroimage. 2009 Apr 1;45(2):333-41
References_xml – volume: 610
  start-page: 139
  year: 2005
  end-page: 157
  ident: bb0050
  article-title: Computing large deformation metric mappings via geodesic flows of diffeomorphisms
  publication-title: International Journal of Computer Vision
– year: 2009
  ident: bb0090
  article-title: Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions
– year: 2007
  ident: bb0150
  article-title: What data to co-register for computing atlases
  publication-title: Proceedings of the International Conference on Computer Vision, IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis
– volume: 460
  start-page: 786
  year: 2009
  end-page: 802
  ident: bb0100
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: Neuroimage
– reference: Ghosh, S.S., Kakunoori, S., Augustinack, J., Nieto-Castanon, A., Kovelman, I., Gaab, N., Christodoulou, J.A., Triantafyllou, C., Gabrieli, J.D.E., Fischl, B., 2010. Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4-to-11 years of age. NeuroImage 53 (1), 85–93.
– reference: Cotter, C.J., Holm, D.D. Singular solutions, momentum maps and computational anatomy. Arxiv preprint nlin.SI/0605020, 2006.
– volume: 18
  start-page: 1973
  year: 2008
  end-page: 1980
  ident: bb0075
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cerebral Cortex
– year: 1997
  ident: bb0110
  article-title: The convenient setting of global analysis
– volume: 330
  start-page: 222
  year: 2009
  end-page: 238
  ident: bb0020
  article-title: A fast and log-Euclidean polyaffine framework for locally linear registration
  publication-title: Journal of Mathematical Imaging and Vision
– volume: 450
  start-page: 333
  year: 2009
  end-page: 341
  ident: bb0035
  article-title: Computing average shaped tissue probability templates
  publication-title: NeuroImage
– start-page: 3
  year: 2003
  end-page: 49
  ident: bb0130
  article-title: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
  publication-title: SIAM review
– volume: 4584
  start-page: 396
  year: 2007
  ident: bb0115
  article-title: A Hamiltonian particle method for diffeomorphic image registration
  publication-title: Lecture Notes in Computer Science
– start-page: 702
  year: 2006
  end-page: 709
  ident: bb0135
  article-title: Diffeomorphic registration using B-splines
  publication-title: Medical Image Computing and Computer-Assisted Intervention — MICCAI 2006
– volume: 650
  start-page: 113
  year: 2007
  end-page: 134
  ident: bb0155
  article-title: Jacobi fields in groups of diffeomorphisms and applications
  publication-title: Quarterly of Applied Mathematics
– volume: 380
  start-page: 95
  year: 2007
  end-page: 113
  ident: bb0025
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– start-page: 924
  year: 2006
  end-page: 931
  ident: bb0015
  article-title: A Log-Euclidean framework for statistics on diffeomorphisms
  publication-title: Medical Image Computing and Computer-Assisted Intervention — MICCAI 2006
– start-page: 101
  year: 1995
  end-page: 112
  ident: bb0060
  article-title: Topological properties of smooth anatomic maps
  publication-title: Information processing in medical imaging
– volume: 170
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0095
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 120
  start-page: 26
  year: 2008
  end-page: 41
  ident: bb0045
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Medical image analysis
– volume: 510
  start-page: 214
  year: 2010
  end-page: 220
  ident: bb0105
  article-title: Evaluation of volume-based and surface-based brain image registration methods
  publication-title: NeuroImage
– volume: 450
  start-page: 40
  year: 2009
  end-page: 50
  ident: bb0170
  article-title: Evolutions equations in computational anatomy
  publication-title: Neuroimage
– year: 2007
  ident: bb0085
  article-title: Pattern theory: from representation to inference
– volume: 260
  start-page: 839
  year: 2005
  end-page: 851
  ident: bb0030
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 240
  start-page: 209
  year: 2006
  end-page: 228
  ident: bb0120
  article-title: Geodesic shooting for computational anatomy
  publication-title: Journal of Mathematical Imaging and Vision
– volume: 340
  start-page: 44
  year: 2007
  end-page: 60
  ident: bb0055
  article-title: 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry
  publication-title: Neuroimage
– volume: 390
  start-page: 1064
  year: 2008
  end-page: 1080
  ident: bb0140
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: NeuroImage
– year: 2010
  ident: bb0160
  article-title: Shapes and Diffeomorphisms, volume 171 of Applied Mathematical Sciences
– year: 2009
  ident: bb0125
  article-title: FAIR: flexible algorithms for image registration
– volume: 260
  start-page: 462
  year: 2007
  end-page: 470
  ident: bb0145
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type
  publication-title: IEEE Transactions on Medical Imaging
– reference: Ashburner, J., Klöppel, S., 2010. Multivariate models of inter-subject anatomical variability. NeuroImage.
– year: 2007
  ident: bb0005
  article-title: Non-linear registration, aka spatial normalisation
  publication-title: FMRIB Analysis Group Technical Reports: TR07JA02
– volume: 320
  start-page: 41
  year: 2008
  end-page: 56
  ident: bb0165
  article-title: Transport of relational structures in groups of diffeomorphisms
  publication-title: Journal of Mathematical Imaging and Vision
– volume: 190
  start-page: 615
  year: 1995
  ident: bb0010
  article-title: A fully automatic multimodality image registration algorithm
  publication-title: Journal of computer assisted tomography
– volume: 50
  start-page: 1435
  year: 1996
  end-page: 1447
  ident: bb0065
  article-title: Deformable templates using large deformation kinematics
  publication-title: IEEE transactions on image processing
– start-page: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2010.12.049_bb0130
  article-title: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
– start-page: 924
  year: 2006
  ident: 10.1016/j.neuroimage.2010.12.049_bb0015
  article-title: A Log-Euclidean framework for statistics on diffeomorphisms
– volume: 4584
  start-page: 396
  year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0115
  article-title: A Hamiltonian particle method for diffeomorphic image registration
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-73273-0_33
– ident: 10.1016/j.neuroimage.2010.12.049_bb0070
– volume: 18
  start-page: 1973
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroimage.2010.12.049_bb0075
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhm225
– volume: 330
  start-page: 222
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2010.12.049_bb0020
  article-title: A fast and log-Euclidean polyaffine framework for locally linear registration
  publication-title: Journal of Mathematical Imaging and Vision
  doi: 10.1007/s10851-008-0135-9
– ident: 10.1016/j.neuroimage.2010.12.049_bb0080
  doi: 10.1016/j.neuroimage.2010.05.075
– year: 2009
  ident: 10.1016/j.neuroimage.2010.12.049_bb0125
– volume: 320
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2010.12.049_bb0165
  article-title: Transport of relational structures in groups of diffeomorphisms
  publication-title: Journal of Mathematical Imaging and Vision
  doi: 10.1007/s10851-008-0074-5
– year: 1997
  ident: 10.1016/j.neuroimage.2010.12.049_bb0110
– year: 2010
  ident: 10.1016/j.neuroimage.2010.12.049_bb0160
– year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0150
  article-title: What data to co-register for computing atlases
– year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0085
– volume: 510
  start-page: 214
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2010.12.049_bb0105
  article-title: Evaluation of volume-based and surface-based brain image registration methods
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.091
– start-page: 702
  year: 2006
  ident: 10.1016/j.neuroimage.2010.12.049_bb0135
  article-title: Diffeomorphic registration using B-splines
– year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0005
  article-title: Non-linear registration, aka spatial normalisation
– year: 2009
  ident: 10.1016/j.neuroimage.2010.12.049_bb0090
– volume: 610
  start-page: 139
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2010.12.049_bb0050
  article-title: Computing large deformation metric mappings via geodesic flows of diffeomorphisms
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000043755.93987.aa
– volume: 460
  start-page: 786
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2010.12.049_bb0100
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.037
– volume: 190
  start-page: 615
  issue: 4
  year: 1995
  ident: 10.1016/j.neuroimage.2010.12.049_bb0010
  article-title: A fully automatic multimodality image registration algorithm
  publication-title: Journal of computer assisted tomography
  doi: 10.1097/00004728-199507000-00022
– volume: 260
  start-page: 839
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2010.12.049_bb0030
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 450
  start-page: 40
  issue: 1S1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.12.049_bb0170
  article-title: Evolutions equations in computational anatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.050
– volume: 240
  start-page: 209
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2010.12.049_bb0120
  article-title: Geodesic shooting for computational anatomy
  publication-title: Journal of Mathematical Imaging and Vision
  doi: 10.1007/s10851-005-3624-0
– volume: 340
  start-page: 44
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0055
  article-title: 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.030
– start-page: 101
  year: 1995
  ident: 10.1016/j.neuroimage.2010.12.049_bb0060
  article-title: Topological properties of smooth anatomic maps
– volume: 380
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0025
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 390
  start-page: 1064
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2010.12.049_bb0140
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.031
– volume: 170
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2010.12.049_bb0095
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 450
  start-page: 333
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2010.12.049_bb0035
  article-title: Computing average shaped tissue probability templates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.008
– volume: 50
  start-page: 1435
  issue: 10
  year: 1996
  ident: 10.1016/j.neuroimage.2010.12.049_bb0065
  article-title: Deformable templates using large deformation kinematics
  publication-title: IEEE transactions on image processing
  doi: 10.1109/83.536892
– volume: 120
  start-page: 26
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2010.12.049_bb0045
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2007.06.004
– volume: 260
  start-page: 462
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0145
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2006.887380
– ident: 10.1016/j.neuroimage.2010.12.049_bb0040
  doi: 10.1016/j.neuroimage.2010.03.059
– volume: 650
  start-page: 113
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2010.12.049_bb0155
  article-title: Jacobi fields in groups of diffeomorphisms and applications
  publication-title: Quarterly of Applied Mathematics
  doi: 10.1090/S0033-569X-07-01027-5
– reference: 19059343 - Neuroimage. 2009 Mar;45(1 Suppl):S40-50
– reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41
– reference: 7622696 - J Comput Assist Tomogr. 1995 Jul-Aug;19(4):615-23
– reference: 19146961 - Neuroimage. 2009 Apr 1;45(2):333-41
– reference: 17354979 - Med Image Comput Comput Assist Interv. 2006;9(Pt 1):924-31
– reference: 18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80
– reference: 17659998 - Med Image Anal. 2008 Feb;12(1):26-41
– reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
– reference: 17035049 - Neuroimage. 2007 Jan 1;34(1):44-60
– reference: 18290061 - IEEE Trans Image Process. 1996;5(10):1435-47
– reference: 19809583 - J Math Imaging Vis. 2008 Sep 1;32(1):41-56
– reference: 26082678 - Proc IEEE Int Conf Comput Vis. 2007 Oct;2007:null
– reference: 17354834 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):702-9
– reference: 20347998 - Neuroimage. 2011 May 15;56(2):422-39
– reference: 20123029 - Neuroimage. 2010 May 15;51(1):214-20
– reference: 17427733 - IEEE Trans Med Imaging. 2007 Apr;26(4):462-70
– reference: 17633716 - Inf Process Med Imaging. 2007;20:396-407
– reference: 20613972 - J Math Imaging Vis. 2006 Jan 31;24(2):209-228
– reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
– reference: 20621657 - Neuroimage. 2010 Oct 15;53(1):85-93
– reference: 18037310 - Neuroimage. 2008 Feb 1;39(3):1064-80
– reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
SSID ssj0009148
Score 2.5340278
Snippet This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more...
This paper presents a nonlinear image registration algorithm based on the setting ofLarge Deformation Diffeomorphic Metric Mapping(LDDMM), but with a more...
This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 954
SubjectTerms Accuracy
Algorithms
Behavior
Brain - anatomy & histology
Brain Mapping - methods
Computer Simulation
Databases, Factual
Deformation
Diffeomorphisms
Expert Systems
Gauss–Newton optimisation
Geodesic shooting
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Nonlinear Dynamics
Nonlinear registration
Registration
Shape modelling
Studies
Technical Note
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQB9RLxaOPLQ_5wDVs7DgvcUI8hUQPLUjcLL8CqdgENbtXxH_gH_JLmEmc0KWttBLX2CMl4_H4c_z5G0J2I2XTrMDiLqoQgbAuD3SehoETBVNGoCJKy_L9npxdifPr-HqJHPZ3YZBW6XN_l9PbbO2fjL03x_dlOf4JyACWG9hvtDJROcpuo3odxPTewyvNI2eiuw4XRwH29myejuPVakaWE5i5HckLfwyiqua_l6i_IehbJuUfS9PJKvnoMSU96F57jSy5ap2sXPhT8w3y4wiroNSTGnxaGoq1GHq1XIq89xt642rrYLxoc1vXSISmqrL0VM2a5vnxCRIhIERaQ3aZePbPJ3J1cnx5eBb4WgqBifN4GhjmUHvQ2SJDTT5umDaaK20jncGGtMisSkxojcAqoIJZy10G4EfwFF4wSvLoM1mu6sp9JTR2nCsVCRNmhYh1qAECRlkcqsQKbUM3ImnvPmm80DjWu7iTPaPsl3x1vETHS8YlOH5E2GB534ltLGCT9yMk-8ukkP4krAgL2O4PtnNBt6D1Vh8Q0k_8RkIkihRAeArNdGiGwcFzGFW5etbIDHZxkDg5-38XCOoEj3jDEfnSRdjgEMAaLOG5ADfPxd7QAQXD51uq8rYVDofkDfOAf3vXZ2-SD91_dWQvbZHl6e-Z2wZgNtU77cx7AZ-mPBs
  priority: 102
  providerName: Elsevier
Title Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910016496
https://dx.doi.org/10.1016/j.neuroimage.2010.12.049
https://www.ncbi.nlm.nih.gov/pubmed/21216294
https://www.proquest.com/docview/1644780079
https://www.proquest.com/docview/855904821
https://www.proquest.com/docview/910635110
https://pubmed.ncbi.nlm.nih.gov/PMC3221052
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEuFe8ulJUPXAOx4ySOOKBSWpbXalVRaW-WYzvtIjZuye6V385M4mQpL-3JB3ukaDwef7a_fEPI80TbXFZY3EVXIhLWFVFZ5HHkRMW0EaiI0rJ8p9nkXHyYp_Nw4dYEWmWfE9tEbb3BO_KXAOtFDugmL15fXUdYNQpfV0MJjR2yh9JlePjK5_lGdJeJ7le4NIkkDAhMno7f1epFLpawajuCF14KoqLm37enP-Hn7yzKX7al07tkP-BJetQFwD1yy9X3ye3P4cX8AZm9xQoofunBnwtDsQ5Dr5RLkfN-QS-ctw7mijaX3iMJmura0nd63TQRpEDAhtRDXlkG3s9Dcn568uV4EoUqCpFJi3QVGeZQddDZSqIaHzesNCXXpU1KCUfRSlqdmdgagfU_BbOWOwmwR_AcPi_JiuQR2a197Q4ITR3nWifCxLISaRmXAP4SmcY6s6K0sRuRvHeeMkFiHCtdfFM9l-yr2rhdodsV4wrcPiJssLzqZDa2sCn6-VH9b6SQ-BTsBVvYvhpsA9ToIMSW1od9OKiw5Bu1CdARoUM3TA6-wOja-XWjJJzfIGVy9u8hAN8yfNyNR-RxF1-DQwBlsIwXAtx8I_KGASgVfrOnXly2kuGQtmEV8Cf___Cn5E53ZY7EpEOyu_q-ds8Ac63KMdl58YON2-U1JntHx2efZti-_ziZQvvmZDo7-wnnjDS2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuqDy7UMAHOFrEjvMSQqhqKVv6EIdW2pvxK-0iNilkV4g_xW9kJomzlJf20nM8UjQez3y2P39DyPNYuywvsbmLLiWTzhfMFFnEvCy5thIVUVqW70k6PpPvJ8lkjfwIb2GQVhlyYpuoXW3xjPwlwHqZAbrJijeXXxh2jcLb1dBCowuLQ__9G2zZmtcHezC_L4TYf3u6O2Z9VwFmkyKZM8s9qvB5V-aoTicsN9YIbVxsctialbnTqY2cldgPU3LnhM8BBkiRlaWPUxRfgpS_AYU3QgphNsmWIr9cdk_vkpjlnBc9c6jjk7X6lNMZZImOUIaHkKjg-fdy-Cfc_Z21-UsZ3N8kt3v8Sne6gLtD1nx1l9w47m_o75EPe9hxpZ7VMH9TS7HvQ1DmpcixP6fnvnYeYoM2F3WNpGuqK0ff6UXTMEi5gEVpDXls1vOM7pOza_HvA7Je1ZXfIjTxQmgdSxvlpUxMZABsxnkS6dRJ4yI_IllwnrK9pDl21visAnftk1q6XaHbFRcK3D4ifLC87GQ9VrApwvyo8GwVEq2C2rOC7avBtoc2HWRZ0Xo7hIPqU0yjlgtiROjwGSYHb3x05etFo3LYL0KKFvzfQwAupniZHI3Iwy6-BocAquGpKCS4-UrkDQNQmvzql2p60UqUQ5mAVSAe_f_Hn5Gb49PjI3V0cHL4mNzqjuuRFLVN1udfF_4J4L25edouMko-Xveq_gnLRmvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqIlVsUHlPKeAFLKPGjvMSQhViGFoKVRdUmp1x_GgHMUkhM0L9Nb6Oe-M4Q3lpNl3HlqLr-zi2j88l5FmiTF44bO6inIiEsWVUlXkcWeGY0gIVUTqW73F2cCreTdPpBvkR3sIgrTLkxC5Rm0bjGfkewHqRA7rJyz3X0yJOxpP9i68RdpDCm9bQTsO7yJG9_A7bt_bl4RjW-jnnkzcfXx9EfYeBSKdluog0s6jIZ40rUKmOa1bpiqvKJFUB2zRXGJXp2GiBvTEFM4bbAiCB4LlzNslQiAnS_408gbIJsZRP85XgLxP-GV6aRAVjZc8i8tyyTqtyNoeM4clleCCJap5_L41_Qt_fGZy_lMTJNrnVY1n6yjvfbbJh6ztk60N_W3-XnIyx-0ozb2AtZ5piD4ig0kuRb39Gz2xjLPgJbc-bBgnYVNWGvlXLto0g_QIupQ3ktHnPObpHTq_FvvfJZt3U9iGhqeVcqUTouHAireIKgGdSpLHKjKhMbEckD8aTupc3xy4bX2TgsX2WK7NLNLtkXILZR4QNMy-8xMcac8qwPjI8YYWkK6EOrTH3xTC3hzkevqw5eze4g-zTTStXwTEidPgMi4O3P6q2zbKVBewdIV1z9u8hAB0zvFiOR-SB96_BIIBwWMZLAWa-4nnDAJQpv_qlnp13cuVQMiAK-M7_f_wp2YJ4lu8Pj48ekZv-5B75Ubtkc_FtaR8D9FtUT7oYo-TTdQf1T5lucCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffeomorphic+registration+using+geodesic+shooting+and+Gauss-Newton+optimisation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ashburner%2C+John&rft.au=Friston%2C+Karl+J&rft.date=2011-04-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=55&rft.issue=3&rft.spage=954&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.12.049&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3556011031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon