Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation

This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perfor...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 55; no. 3; pp. 954 - 967
Main Authors Ashburner, John, Friston, Karl J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2011
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss–Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2010.12.049