How Noise Affects the Synchronization Properties of Recurrent Networks of Inhibitory Neurons

GABAergic interneurons play a major role in the emergence of various types of synchronous oscillatory patterns of activity in the central nervous system. Motivated by these experimental facts, modeling studies have investigated mechanisms for the emergence of coherent activity in networks of inhibit...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 18; no. 5; pp. 1066 - 1110
Main Authors Brunel, Nicolas, Hansel, David
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.05.2006
MIT Press Journals, The
Massachusetts Institute of Technology Press (MIT Press)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:GABAergic interneurons play a major role in the emergence of various types of synchronous oscillatory patterns of activity in the central nervous system. Motivated by these experimental facts, modeling studies have investigated mechanisms for the emergence of coherent activity in networks of inhibitory neurons. However, most of these studies have focused either when the noise in the network is absent or weak or in the opposite situation when it is strong. Hence, a full picture of how noise affects the dynamics of such systems is still lacking. The aim of this letter is to provide a more comprehensive understanding of the mechanisms by which the asynchronous states in large, fully connected networks of inhibitory neurons are destabilized as a function of the noise level. Three types of single neuron models are considered: the leaky integrate-and-fire (LIF) model, the exponential integrate-and-fire (EIF), model and conductance-based models involving sodium and potassium Hodgkin-Huxley (HH) currents. We show that in all models, the instabilities of the asynchronous state can be classified in two classes. The first one consists of clustering instabilities, which exist in a restricted range of noise. These instabilities lead to synchronous patterns in which the population of neurons is broken into clusters of synchronously firing neurons. The irregularity of the firing patterns of the neurons is weak. The second class of instabilities, termed oscillatory firing rate instabilities, exists at any value of noise. They lead to cluster state at low noise. As the noise is increased, the instability occurs at larger coupling, and the pattern of firing that emerges becomes more irregular. In the regime of high noise and strong coupling, these instabilities lead to stochastic oscillations in which neurons fire in an approximately Poisson way with a common instantaneous probability of firing that oscillates in time.
Bibliography:May, 2006
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-7667
1530-888X
DOI:10.1162/neco.2006.18.5.1066