基于小型无人机遥感的玉米倒伏面积提取
该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著...
Saved in:
Published in | 农业工程学报 Vol. 30; no. 19; pp. 207 - 213 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国农业科学院农业资源与农业区划研究所,北京 100081
2014
四川省农业科学院遥感应用研究所,成都 610066%中国农业科学院农业资源与农业区划研究所,北京,100081 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.3969/j.issn.1002-6819.2014.19.025 |
Cover
Summary: | 该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著低于基于色彩特征提取方法的。该研究结果为应用无人机彩色遥感图像准确提取倒伏玉米面积提供了依据和方法。 |
---|---|
Bibliography: | remote sensing;image processing;unmanned aerial vehicles;lodging;maize 11-2047/S Li Zongnan, Chen Zhongxin, Wang Limin, Liu Jia, Zhou Qingbo (1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Institute of Remote Sensing Application, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China) The information of crop lodging, such as spatial distribution and area, is very critical for agricultural hazard assessment and agricultural insurance claims. It is hard work to measure the area of lodging in a ground survey. A survey method using remote sensing technology is fast and efficient, but it was limited by a lack of available satellite remote sensing data. In recent years, Unmanned Aerial Vehicle (UAV) has been rapidly developed in civil applications. A small UAV remote sensing system in which a UAV carries a digital camera is a portable, stable, and efficient tool for a crop field survey while there is no satellite remote sensing |
ISSN: | 1002-6819 |
DOI: | 10.3969/j.issn.1002-6819.2014.19.025 |