基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取

土地利用/覆盖信息是区域气候与环境研究的基础,是土地资源规划与管理、合理开发与保护的信息保障。为此,该文选取长株潭城市群核心区为试验区,以时间序列HJ卫星影像为数据源,首先构建了时间序列归一化植被指数(normalizeddifferencevegetationindex,NDVI)、时间序列光谱第一主成分(firstprincipalcomponent,PCI)数据集,通过J-M(Jeffries.Matusita)距离变量可分离性分析结合地表覆盖的物候特征,确定最佳时序HJ组合数据;其次,采用面向对象的随机森林算法对研究区土地利用/覆盖信息进行分类,并对分类结果进行精度评价与比较分析。研究...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 14; pp. 258 - 265
Main Author 朱永森 曾永年 张猛
Format Journal Article
LanguageChinese
Published 中南大学地球科学与信息物理学院,长沙,410083%中南大学空间信息技术与可持续发展研究中心,长沙,410083 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.14.035

Cover

Abstract 土地利用/覆盖信息是区域气候与环境研究的基础,是土地资源规划与管理、合理开发与保护的信息保障。为此,该文选取长株潭城市群核心区为试验区,以时间序列HJ卫星影像为数据源,首先构建了时间序列归一化植被指数(normalizeddifferencevegetationindex,NDVI)、时间序列光谱第一主成分(firstprincipalcomponent,PCI)数据集,通过J-M(Jeffries.Matusita)距离变量可分离性分析结合地表覆盖的物候特征,确定最佳时序HJ组合数据;其次,采用面向对象的随机森林算法对研究区土地利用/覆盖信息进行分类,并对分类结果进行精度评价与比较分析。研究结果表明:采用时间序列HJ组合数据与面向对象的分类方法,提取城市土地利用/覆盖信息的总体精度和Kappa系数分别达到91.55%和0.90,其中水田、水浇地、旱地、林地、建设用地的生产者精度均达到90%及以上;相对于时间序列基于像元分类、单时相面向对象的分类方法,该文提出的土地利用/覆盖信息提取方法的总体分类精度和Kappa系数分别提高了2.26%、0.02和6.82%、0.08,有效提高了区域土地利用/覆盖信息提取的精度,为大范围土地利用/覆盖精细化分类提供了有效的途径。
AbstractList 土地利用/覆盖信息是区域气候与环境研究的基础,是土地资源规划与管理、合理开发与保护的信息保障。为此,该文选取长株潭城市群核心区为试验区,以时间序列HJ卫星影像为数据源,首先构建了时间序列归一化植被指数(normalizeddifferencevegetationindex,NDVI)、时间序列光谱第一主成分(firstprincipalcomponent,PCI)数据集,通过J-M(Jeffries.Matusita)距离变量可分离性分析结合地表覆盖的物候特征,确定最佳时序HJ组合数据;其次,采用面向对象的随机森林算法对研究区土地利用/覆盖信息进行分类,并对分类结果进行精度评价与比较分析。研究结果表明:采用时间序列HJ组合数据与面向对象的分类方法,提取城市土地利用/覆盖信息的总体精度和Kappa系数分别达到91.55%和0.90,其中水田、水浇地、旱地、林地、建设用地的生产者精度均达到90%及以上;相对于时间序列基于像元分类、单时相面向对象的分类方法,该文提出的土地利用/覆盖信息提取方法的总体分类精度和Kappa系数分别提高了2.26%、0.02和6.82%、0.08,有效提高了区域土地利用/覆盖信息提取的精度,为大范围土地利用/覆盖精细化分类提供了有效的途径。
TP79%S127; 土地利用/覆盖信息是区域气候与环境研究的基础,是土地资源规划与管理、合理开发与保护的信息保障.为此,该文选取长株潭城市群核心区为试验区,以时间序列HJ卫星影像为数据源,首先构建了时间序列归一化植被指数(normalized difference vegetation index,NDVI)、时间序列光谱第一主成分(first principal component,PCl)数据集,通过J-M(Jeffries-Matusita)距离变量可分离性分析结合地表覆盖的物候特征,确定最佳时序HJ组合数据;其次,采用面向对象的随机森林算法对研究区土地利用/覆盖信息进行分类,并对分类结果进行精度评价与比较分析.研究结果表明:采用时间序列HJ组合数据与面向对象的分类方法,提取城市土地利用/覆盖信息的总体精度和Kappa系数分别达到91.55%和0.90,其中水田、水浇地、旱地、林地、建设用地的生产者精度均达到90%及以上;相对于时间序列基于像元分类、单时相面向对象的分类方法,该文提出的土地利用/覆盖信息提取方法的总体分类精度和Kappa系数分别提高了2.26%、0.02和6.82%、0.08,有效提高了区域土地利用/覆盖信息提取的精度,为大范围土地利用/覆盖精细化分类提供了有效的途径.
Abstract_FL Land use/cover information is the basis for the study of regional climate and environment,and the information security of land resources planning and management.However,the accuracy of urban areas land use/cover information extraction is significantly affected by the high heterogeneity of land surface.Remote sensing technology,providing large-scale,timely,continuous and comprehensive measurements,has become an important means of land use/cover information extraction.HJ satellites,with high temporal and spatial resolution and wide coverage,provide a new way to fast and accurately extract large-scale land use/cover information.They have been widely used in land use/cover classification,crop information extraction,wetlands information extraction,and so on.The object-oriented classification method,which makes full use of the spectral information of remote sensing images and takes into account the spatial distribution characteristics and correlations of geographical objects,can compensate for the deficiency of traditional pixel-based classification methods.This study developed a supervised classification method for regional land use based on the object-oriented random trees algorithm to quickly extract land surface information with low cost and high precision.We selected the Changsha-Zhuzhou-Xiangtan core area as the study area and used the multi-temporal and multi-spectral information of HJ satellite CCD (charge-coupled device) data.Firstly,high quality HJ-CCD data (10 phases in total) were selected,and preprocessed by radiometric calibration,atmospheric correction,accurate geometric correction and image registration.The time series of normalized difference vegetation index (NDVI) and of the first principal component (PC1) were calculated,and their results overlapped each other.The best time series of HJ classification data were determined by the J-M (Jeffries-Matusita) distance variable separability analysis,combined with land cover of study area,and phenotypic characteristics difference of different vegetation.HJ data of the February,May,July,September,October and December phases are the best data combinations for land use/over information extraction in this study.Then the e-Cognition's multi-scale segmentation algorithm was employed to segment the HJ-NDVI,HJ-PC1,HJ-PC2 (the second principal component) of the best time series combination.The urban land use/cover information was classified by the object-oriented random forest algorithm.Finally,the accuracy of the algorithm was evaluated,and compared with that of the time series pixel-based classification and single-phase object-oriented classification.The results indicate that the land use/cover information extracted by the object-oriented classification method using time series HJ data is consistent with the real situation on range and distribution of each land type,and with less speckle noise.The overall accuracy and Kappa coefficient of this method are 91.55% and 0.90 respectively.Specifically,the accuracy is higher than 90% for the paddy field,irrigated land,dry land and forest,and is close to 90% for building land.Compared with the time-series pixel-based classification and single-phase object-oriented classification methods,the overall classification accuracy and Kappa coefficient of the proposed method are increased by 2.26%,0.02 and 6.82%,0.08 respectively.This means the best time series HJ combination data can fully utilize the seasonal spectral differences of different vegetation types,which avoid the spectral similarity among different vegetations in single-phase image.So the proposed method can effectively improve the accuracy of land use/cover information extraction in urban areas.
Author 朱永森 曾永年 张猛
AuthorAffiliation 中南大学地球科学与信息物理学院,长沙410083 中南大学空间信息技术与可持续发展研究中心,长沙410083
AuthorAffiliation_xml – name: 中南大学地球科学与信息物理学院,长沙,410083%中南大学空间信息技术与可持续发展研究中心,长沙,410083
Author_FL Zhu Yongsen
Zeng Yongnian
Zhang Meng
Author_FL_xml – sequence: 1
  fullname: Zhu Yongsen
– sequence: 2
  fullname: Zeng Yongnian
– sequence: 3
  fullname: Zhang Meng
Author_xml – sequence: 1
  fullname: 朱永森 曾永年 张猛
BookMark eNo9j01LAkEAhudgkJl_IohOu83Mzs44x5DKwujiXcb9sJUayyXKYxDixY-gJMoQO0QRpN7Kgv6Ms2un_kIbRqcXXh7el2cBxGRZOgAsI6gjxJm5WtI935c6ghBrNIW4jiFiOiI6NMwYiP_38yDp-14BmshgEBIUBzuqN56Mm5lt1XgOrnvB1TBovExem19396p9oQZv01Ff1Wvh6D28OVfdnuoOVf0pvHz8_mhNH2rhbWfy2Q_OBkGrrVqdRTDnin3fSf5lAuQ21nPpjJbd3dxKr2U1y-SmZnGbcoa4Q5BhMOpgGzNKIYSuaQlIBKVmAdsGF9wxXRcTThxKLEFsm1CCnJSRACuz2RMhXSGL-VL5uCKjw7ysFq3Twq89IpF7RC7NSGuvLItHXsQeVrwDUanmKcMcpyDjxg_JLnl2
ClassificationCodes TP79%S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.14.035
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Extract of land use/cover information based on HJ satellites data and object-oriented classification
DocumentTitle_FL Extract of land use/cover information based on HJ satellites data and object-oriented classification
EndPage 265
ExternalDocumentID nygcxb201714035
672928079
GrantInformation_xml – fundername: 国家自然科学基金项目; 中南大学中央高校基本科研业务费专项资金
  funderid: (41171326,40771198); (2017zzts775)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c595-c9d69719e413376e2d2766000f5ca04a665b2d39a9e5ff2494e64ca4dd4641e83
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 09:57:59 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 14
Keywords 面向对象
remote sensing
time series
land use/cover classification
遥感
object-oriented
urban areas
城市区域
classification
时间序列
land use
HJ satellites
HJ卫星
土地利用
土地利用/覆盖分类
分类
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c595-c9d69719e413376e2d2766000f5ca04a665b2d39a9e5ff2494e64ca4dd4641e83
Notes Zhu Yongsen, Zeng Yongnian, Zhang Meng (1. School of Geosciences and lnfo-physics, Central South University, Changsha 410083, China; 2. Center for Geomatics and Regional Sustainable Development Research, Central South University, Changsha 410083, China)
11-2047/S
land use; remote sensing; classification; time series; object-oriented; land use/cover classification; urban areas; HJ satellites
Land use/cover information is the basis for the study of regional climate and environment, and the information security of land resources planning and management. However, the accuracy of urban areas land use/cover information extraction is significantly affected by the high heterogeneity of land surface. Remote sensing technology, providing large-scale, timely, continuous and comprehensive measurements, has become an important means of land use/cover information extraction. HJ satellites, with high temporal and spatial resolution and wide coverage, provide a new way to fast and accurately extract large-scale land use/cover i
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201714035
chongqing_primary_672928079
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 中南大学地球科学与信息物理学院,长沙,410083%中南大学空间信息技术与可持续发展研究中心,长沙,410083
Publisher_xml – name: 中南大学地球科学与信息物理学院,长沙,410083%中南大学空间信息技术与可持续发展研究中心,长沙,410083
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1508892
Snippet ...
TP79%S127; 土地利用/覆盖信息是区域气候与环境研究的基础,是土地资源规划与管理、合理开发与保护的信息保障.为此,该文选取长株潭城市群核心区为试验区,以时间序列HJ卫星影像为数据源,首先构建了时间序列归一化植被指数(normalized difference vegetation...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 258
SubjectTerms HJ卫星
分类
土地利用
土地利用/覆盖分类
城市区域
时间序列
遥感
面向对象
Title 基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取
URI http://lib.cqvip.com/qk/90712X/201714/672928079.html
https://d.wanfangdata.com.cn/periodical/nygcxb201714035
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEJ7gkhg9GJ9RUcPBPi7Mo7tn-ti9zGaD0RMm3Mi8djktipAoN6MhXHiYKDGKIXgwGhOBm-LBP8Ps4r-wqmd2GEARvUwq1TVVX1d1pqonPTWGcds2hRcybIUYmaxKIYdWBQ2a1SCxojh2EyvRfy25e4837tPRcTbeV3lWOrU0OxMORXO__a7kf6IKPIgrfiX7D5EtlAIDaIgvXCHCcD1RjInPiKgTJYlP8er5jVHkeSNEKuJzIjwcR4IRZSKBQ74W90Cc-III4Nhak0mEhYQElYL4HlEWkZrjgTAnvoscpZAQYI3qu2rahCbQhBaWQstQIvHwP6qSPNcgFBFcA6hr5cC30CISdcSAGoDg5bJZMzmayJCDdeAol0iGOsGKpzTyETSEqiQM9RaTdkANsQMBGEEBENIBTxwQUUT5JRGGXlB0XwQYNSJNtOjBrFX5jUn2aahe3TlGwJKFQrgaGjjDLWEsHObipD1Hz8PtRSCTKaJ01FsAQfTcbGrXFndBSAWG1K5pmuG9OCsb-XaNYqMlh9jsZDhdtIIrTKCAon8IncQjM5mfkVMg18HMZWooj4tI9YzW8_lCaEQWSRNXTW6UH0AIRhH2cZMqZVhMwdzL82Segh2n_Kih5YSaNfbPazM7-6_I0bQvXKbzPpoYKkzgyU0XaoEhM2uJc6izevtJK3ocogw2rWSnjH7bdS1WMfqlGlH1_V2FhS9OirRnY_MIvr9LZ5aD_4goTpbhuQqmD1nkME4bpAdy-DiI2N5lcqrdeghFq_6GsN0M2q1SuTt23jiX71MHZfbQuWD0zU1eNM7K1nTeqye5ZNxJ13d2d5Yao-ni587r9c6rrc7il92vSz_fvU9XXqSb3_a2N9KF-e729-6b5-naerq2lS586r78OLz3Yb77dnX3x0bn6WZneSVdXr1sjNX9sVqjmv-bpRoxwaqRiLlwLZFADQwlSmLHNrgEyqsmiwKTBpyz0I4dEYiENZs2FTThNApoHFNOrcRzrhiV9lQ7uWoMwiYvZsyzeERjGtLQgyIipk0r4GEsPCGuGQOFVyYeZC14JrhrC-zjBaODuZ8m8gfzo4lDcb3-d5EB4wzS2avVG0ZlZno2uQmbjZnwVr4YfgGX9Nqn
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EHJ%E5%8D%AB%E6%98%9F%E6%95%B0%E6%8D%AE%E4%B8%8E%E9%9D%A2%E5%90%91%E5%AF%B9%E8%B1%A1%E5%88%86%E7%B1%BB%E7%9A%84%E5%9C%9F%E5%9C%B0%E5%88%A9%E7%94%A8%2F%E8%A6%86%E7%9B%96%E4%BF%A1%E6%81%AF%E6%8F%90%E5%8F%96&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9C%B1%E6%B0%B8%E6%A3%AE&rft.au=%E6%9B%BE%E6%B0%B8%E5%B9%B4&rft.au=%E5%BC%A0%E7%8C%9B&rft.date=2017&rft.pub=%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%83%E7%A7%91%E5%AD%A6%E4%B8%8E%E4%BF%A1%E6%81%AF%E7%89%A9%E7%90%86%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%B2%99%2C410083%25%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%A9%BA%E9%97%B4%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%8F%AF%E6%8C%81%E7%BB%AD%E5%8F%91%E5%B1%95%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E9%95%BF%E6%B2%99%2C410083&rft.issn=1002-6819&rft.volume=33&rft.issue=14&rft.spage=258&rft.epage=265&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.14.035&rft.externalDocID=nygcxb201714035
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg