基于高光谱信息的107杨叶片等效水厚度估算模型的研究
[目的]为实现杨树叶片水分高光谱信息进行快速、准确估算,[方法]将实测杨树叶片等效水厚度作为水分含量表征量,并测定叶片高光谱数据,同时,利用辐射传输模型模拟不同等效水厚度条件下的叶片尺度和冠层尺度的高光谱反射数据,通过分析常用水分植被指数对等效水厚度的敏感性,利用植被指数比值的方法构建新等效水厚度植被指数(GVMI/MSI)。通过GVMI/MSI、全球植被水分指数(GVMI)、水分胁迫指数(MSI)分别对杨树叶片尺度和冠层尺度等效水厚度估算精度进行比较分析。[结果]表明:GVMI指数、MSI指数以及新建GVMI/MSI指数的叶片尺度杨树叶片等效水厚度估算模型的精度R2分别为0.997、0.99...
Saved in:
Published in | 林业科学研究 Vol. 29; no. 6; pp. 826 - 833 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国林业科学研究院林业研究所 国家林业局林木培育重点实验室,北京 100091
2016
南京林业大学南方现代林业协同创新中心,江苏 南京 210037%中国林业科学研究院林业研究所 国家林业局林木培育重点实验室,北京,100091 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [目的]为实现杨树叶片水分高光谱信息进行快速、准确估算,[方法]将实测杨树叶片等效水厚度作为水分含量表征量,并测定叶片高光谱数据,同时,利用辐射传输模型模拟不同等效水厚度条件下的叶片尺度和冠层尺度的高光谱反射数据,通过分析常用水分植被指数对等效水厚度的敏感性,利用植被指数比值的方法构建新等效水厚度植被指数(GVMI/MSI)。通过GVMI/MSI、全球植被水分指数(GVMI)、水分胁迫指数(MSI)分别对杨树叶片尺度和冠层尺度等效水厚度估算精度进行比较分析。[结果]表明:GVMI指数、MSI指数以及新建GVMI/MSI指数的叶片尺度杨树叶片等效水厚度估算模型的精度R2分别为0.997、0.995、0.998;冠层尺度杨树叶片等效水厚度估算模型精度分别为0.837、0.836、0.973,其中,新建GVMI/MSI指数为杨树叶片等效水厚度估算最佳指数。[结论]GVMI/MSI构建的杨树叶片等效水厚度模型的预测精度较高,是杨树叶片等效水厚度的最佳估算模型。 |
---|---|
Bibliography: | [Objective]To establish a model for the purpose of rapid and effective monitoring of poplar leaf water.[Methods]The equivalent water thickness( EWT) of poplar leaves was used as the token water content,the hyperspectral data of poplar was measured. The range of the equivalent water thickness,measured in poplar leaves,was used as the input parameters of the model. The hyperspectral reflectance data of leaf scale and canopy scale were simulated in different equivalent water thickness. By analyzing common water vegetation index sensitivity of equivalent water thickness,a vegetation index was constructed by the method of vegetation index ratio. The equivalent water thickness estimation accuracy of the leaf scale and canopy scale of poplar was compared with GVMI / MSI,global vegetation moisture index( GVMI) and water stress index( MSI). [Results]The result shows that the accuracies of the equivalent water thickness estimation model of Poplar( R2) with GVMI,MSI and GVMI/MSI as variable are respectively 0. 997,0. 99 |
ISSN: | 1001-1498 |