IL-8 and IP-10 expression from human bronchial epithelial cells BEAS-2B are promoted by Streptococcus pneumoniae endopeptidase O (PepO)

The bronchial epithelium serves as the first defendant line of host against respiratory inhaled pathogens, mainly through releasing chemokines (e.g. interleukin-8 (IL-8), interferon-induced protein 10 (IP-10) etc.) responsible for neutrophil or lymphocyte recruitment to promote the clearance of inha...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 17; no. 1; p. 187
Main Authors Zou, Jiaqiong, Zhou, Long, Hu, Chunlan, Jing, Peng, Guo, Xiaolan, Liu, Sulan, Lei, Yan, Yang, Shangyu, Deng, Jiankang, Zhang, Hong
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.08.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The bronchial epithelium serves as the first defendant line of host against respiratory inhaled pathogens, mainly through releasing chemokines (e.g. interleukin-8 (IL-8), interferon-induced protein 10 (IP-10) etc.) responsible for neutrophil or lymphocyte recruitment to promote the clearance of inhaled pathogens including Streptococcus pneumoniae (S. pneumoniae). Previous studies have shown that IL-8 expression is induced by pneumococcal virulence factors (e.g. pneumolysin, peptidoglycan-polysaccharides, pneumococcal surface protein A (PspA) etc.), which contributes to the pathogenesis of pneumonia. Whether other pneumococcal virulence factors are involved in inducing chemokines expression in epithelium is still unknown. We studied the effect of PepO, a widely expressed and newly discovered pneumococcal virulence protein, on the release of proinflammatory cytokines, IL-8 and IP-10, from human bronchial epithelial cell line BEAS-2B and identified the relevant signaling pathways. Incubation of BEAS-2B with PepO resulted in increased synthesis and release of IL-8 and IP-10 in a dose and time independent manner. We also detected the increased and sustained expression of TLR2 and TLR4 transcripts in BEAS-2B stimulated by PepO. PepO activation leaded to the phosphorylation of MAPKs, Akt and p65. Pharmacologic inhibitors of MAPKs, PI3K and IκB-α phosphorylation attenuated IL-8 release, while IP-10 production was just suppressed by inhibitors of IκB-α phosphorylation, PI3K and P38 MAPK. These results suggest that PepO enhances IL-8 and IP-10 production in BEAS-2B in a MAPKs-PI3K/Akt-p65 dependent manner, which may play critical roles in the pathogenesis of pneumonia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2180
1471-2180
DOI:10.1186/s12866-017-1081-8