Enhanced thermal stability of lichenase from Bacillus subtilis 168 by SpyTag/SpyCatcher-mediated spontaneous cyclization

SpyTag is a peptide that can form an irreversible covalent linkage to its 12 kDa partner SpyCatcher via a spontaneous isopeptide bond. Herein, we fused SpyTag at the N-terminal of lichenase and SpyCatcher at C-terminal so that the termini of lichenase were locked together by the covalent interaction...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology for biofuels Vol. 9; no. 76; p. 79
Main Authors Wang, Jindan, Wang, Yilin, Wang, Xinzhe, Zhang, Dandan, Wu, Shuyu, Zhang, Guangya
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 31.03.2016
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:SpyTag is a peptide that can form an irreversible covalent linkage to its 12 kDa partner SpyCatcher via a spontaneous isopeptide bond. Herein, we fused SpyTag at the N-terminal of lichenase and SpyCatcher at C-terminal so that the termini of lichenase were locked together by the covalent interaction between the partners. In addition, an elastin-like polypeptides tag was subsequently attached to the C-terminus of SpyCatcher, thereby facilitating the non-chromatographic purification of cyclized lichenase. The study showed that the optimum temperature of the cyclized lichenase was about 5 °C higher in comparison to its linear counterpart. Moreover, nearly 80 % of the cyclized lichenase activities were retained after 100 °C exposure, whereas the linear form lost almost all of its activities. Therefore, the cyclized variant displayed a significantly higher thermal stability as temperature elevated and was resistant to hyperthermal denaturation. Besides, the Km value of the cyclized lichenase (7.58 ± 0.92 mg/mL) was approximately 1.7-fold lower than that of the linear one (12.96 ± 1.93 mg/mL), indicating a higher affinity with substrates. This new SpyTag/SpyCatcher cyclization strategy is deemed as a generalized reference for enhancing enzyme stability and can be effectively customized to the cyclization of various enzymes, hence a tremendous potential for successful application in the biocatalytic conversion of biomass to produce fuels and chemicals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1754-6834
1754-6834
DOI:10.1186/s13068-016-0490-5