Antioxidant Potential of Non-Extractable Fractions of Dried Persimmon (Diospyros kaki Thunb.) in Streptozotocin-Induced Diabetic Rats

Oxidative stress causes the progression of diabetes and its complications; thus, maintaining the balance between reactive oxygen species produced by hyperglycemia and the antioxidant defense system is important. We herein examined the antioxidant potential of non-extractable fractions of dried persi...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants Vol. 11; no. 8; p. 1555
Main Authors Mochida, Naoko, Matsumura, Yoko, Kitabatake, Masahiro, Ito, Toshihiro, Kayano, Shin-ichi, Kikuzaki, Hiroe
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oxidative stress causes the progression of diabetes and its complications; thus, maintaining the balance between reactive oxygen species produced by hyperglycemia and the antioxidant defense system is important. We herein examined the antioxidant potential of non-extractable fractions of dried persimmon (NEP) against oxidative stress in diabetic rats. Rats with streptozotocin-induced type 1 diabetes (50 mg/kg body weight) were administered NEP for 9 weeks. Antioxidant enzyme activities and concentration of antioxidants in liver tissues were analyzed with a microplate reader. Extensor digitorum longus (EDL) and soleus muscle fibers were stained with succinate dehydrogenase and muscle fiber sizes were measured. The administration of NEP increased the body weight of diabetes rats. Regarding antioxidant activities, the oxygen radical absorbance capacity and superoxide dismutase activity in liver tissues significantly increased. In addition, increases in glutathione peroxidase activity in liver tissues and reductions in the cross-sectional area of EDL muscle fibers were significantly suppressed. In these results, NEP improved the antioxidant defense system in the liver tissues of diabetic rats, in addition to attenuating of muscle fibers atrophy against oxidative damage induced by hyperglycemia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox11081555