Application of artificial intelligence in cataract management: current and future directions

The rise of artificial intelligence (AI) has brought breakthroughs in many areas of medicine. In ophthalmology, AI has delivered robust results in the screening and detection of diabetic retinopathy, age-related macular degeneration, glaucoma, and retinopathy of prematurity. Cataract management is a...

Full description

Saved in:
Bibliographic Details
Published inEye and vision (Novato, Calif.) Vol. 9; no. 1; p. 3
Main Authors Gutierrez, Laura, Lim, Jane Sujuan, Foo, Li Lian, Ng, Wei Yan, Yip, Michelle, Lim, Gilbert Yong San, Wong, Melissa Hsing Yi, Fong, Allan, Rosman, Mohamad, Mehta, Jodhbir Singth, Lin, Haotian, Ting, Darren Shu Jeng, Ting, Daniel Shu Wei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 07.01.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rise of artificial intelligence (AI) has brought breakthroughs in many areas of medicine. In ophthalmology, AI has delivered robust results in the screening and detection of diabetic retinopathy, age-related macular degeneration, glaucoma, and retinopathy of prematurity. Cataract management is another field that can benefit from greater AI application. Cataract  is the leading cause of reversible visual impairment with a rising global clinical burden. Improved diagnosis, monitoring, and surgical management are necessary to address this challenge. In addition, patients in large developing countries often suffer from limited access to tertiary care, a problem further exacerbated by the ongoing COVID-19 pandemic. AI on the other hand, can help transform cataract management by improving automation, efficacy and overcoming geographical barriers. First, AI can be applied as a telediagnostic platform to screen and diagnose patients with cataract using slit-lamp and fundus photographs. This utilizes a deep-learning, convolutional neural network (CNN) to detect and classify referable cataracts appropriately. Second, some of the latest intraocular lens formulas have used AI to enhance prediction accuracy, achieving superior postoperative refractive results compared to traditional formulas. Third, AI can be used to augment cataract surgical skill training by identifying different phases of cataract surgery on video and to optimize operating theater workflows by accurately predicting the duration of surgical procedures. Fourth, some AI CNN models are able to effectively predict the progression of posterior capsule opacification and eventual need for YAG laser capsulotomy. These advances in AI could transform cataract management and enable delivery of efficient ophthalmic services. The key challenges include ethical management of data, ensuring data security and privacy, demonstrating clinically acceptable performance, improving the generalizability of AI models across heterogeneous populations, and improving the trust of end-users.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2326-0254
2326-0246
2326-0254
DOI:10.1186/s40662-021-00273-z