RNA-Seq transcriptome analysis of breast muscle in Pekin ducks supplemented with the dietary probiotic Clostridium butyricum

Increased attention is being paid to breast muscle yield and meat quality in the duck breeding industry. Our previous report has demonstrated that dietary Clostridium butyricum (C. butyricum) can improve meat quality of Pekin ducks. However, the potential biological processes and molecular mechanism...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 19; no. 1; pp. 844 - 14
Main Authors Liu, Yanhan, Jia, Yaxiong, Liu, Cun, Ding, Limin, Xia, Zhaofei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 28.11.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increased attention is being paid to breast muscle yield and meat quality in the duck breeding industry. Our previous report has demonstrated that dietary Clostridium butyricum (C. butyricum) can improve meat quality of Pekin ducks. However, the potential biological processes and molecular mechanisms that are modulated by dietary C. butyricum in the breast muscle of Pekin ducks remain unknown. Supplementation with C. butyricum increased growth performance and meat yield. Therefore, we utilized de novo assembly methods to analyze the RNA-Seq transcriptome profiles in breast muscle to explore the differentially expressed genes between C. butyricum-treated and control Pekin ducks. A total of 1119 differentially expressed candidate genes were found of which 403 genes were significantly up-regulated and 716 genes were significantly down-regulated significantly. qRT-PCR analysis was used to confirm the accuracy of the of RNA-Seq results. GO annotations revealed potential genes, processes and pathways that may participate in meat quality and muscle development. KEGG pathway analysis showed that the differentially expressed genes participated in numerous pathways related to muscle development, including ECM-receptor interaction, the MAPK signaling pathway and the TNF signaling pathway. This study suggests that long-time dietary supplementation with C. butyricum can modulate muscle development and meat quality via altering the expression patterns of genes involved in crucial metabolic pathways. The findings presented here provide unique insights into the molecular mechanisms of muscle development in Pekin ducks in response to dietary C. butyricum.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-018-5261-1