Identification and characterization of serovar-independent immunogens in Actinobacillus pleuropneumoniae

Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the sele...

Full description

Saved in:
Bibliographic Details
Published inVeterinary research (Paris) Vol. 48; no. 1; p. 74
Main Authors Antenucci, Fabio, Fougeroux, Cyrielle, Bossé, Janine T, Magnowska, Zofia, Roesch, Camille, Langford, Paul, Holst, Peter Johannes, Bojesen, Anders Miki
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 09.11.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the selection and in vitro testing of serovar-independent A. pleuropneumoniae immunogens. Potential immunogens were identified in the complete genomes of three A. pleuropneumoniae strains belonging to different serovars using the following parameters: predicted outer-membrane subcellular localization; ≤ 1 trans-membrane helices; presence of a signal peptide in the protein sequence; presence in all known A. pleuropneumoniae genomes; homology with other well characterized factors with relevant data regarding immunogenicity/protective potential. Using this approach, we selected the proteins ApfA and VacJ to be expressed and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that ApfA and VacJ are highly conserved proteins, naturally expressed during infection by all A. pleuropneumoniae serovars tested. Furthermore, OMVs, ApfA and VacJ were shown to possess a high immunogenic potential in vitro. These findings favour the immunogen selection protocol used, and suggest that OMVs, along with ApfA and VacJ, could represent effective immunogens for the prevention of A. pleuropneumoniae infections in a serovar-independent manner. This hypothesis is nonetheless predictive in nature, and in vivo testing in a relevant animal model will be necessary to verify its validity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1297-9716
0928-4249
1297-9716
DOI:10.1186/s13567-017-0479-5