Facilitating drug delivery in the central nervous system by opening the blood-cerebrospinal fluid barrier with a single low energy shockwave pulse

The blood-cerebrospinal fluid (CSF) barrier (BCSFB) is critically important to the pathophysiology of the central nervous system (CNS). However, this barrier prevents the safe transmission of beneficial drugs from the blood to the CSF and thus the spinal cord and brain, limiting their effectiveness...

Full description

Saved in:
Bibliographic Details
Published inFluids and barriers of the CNS Vol. 19; no. 1; pp. 3 - 13
Main Authors Kung, Yi, Chen, Kuan-Yu, Liao, Wei-Hao, Hsu, Yi-Hua, Wu, Chueh-Hung, Hsiao, Ming-Yen, Huang, Abel P.-H., Chen, Wen-Shiang
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 06.01.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The blood-cerebrospinal fluid (CSF) barrier (BCSFB) is critically important to the pathophysiology of the central nervous system (CNS). However, this barrier prevents the safe transmission of beneficial drugs from the blood to the CSF and thus the spinal cord and brain, limiting their effectiveness in treating a variety of CNS diseases. This study demonstrates a method on SD rats for reversible and site-specific opening of the BCSFB via a noninvasive, low-energy focused shockwave (FSW) pulse (energy flux density 0.03 mJ/mm ) with SonoVue microbubbles (2 × 10 MBs/kg), posing a low risk of injury. By opening the BCSFB, the concentrations of certain CNS-impermeable indicators (70 kDa Evans blue and 500 kDa FITC-dextran) and drugs (penicillin G, doxorubicin, and bevacizumab) could be significantly elevated in the CSF around both the brain and the spinal cord. Moreover, glioblastoma model rats treated by doxorubicin with this FSW-induced BCSFB (FSW-BCSFB) opening technique also survived significantly longer than untreated controls. This is the first study to demonstrate and validate a method for noninvasively and selectively opening the BCSFB to enhance drug delivery into CSF circulation. Potential applications may include treatments for neurodegenerative diseases, CNS infections, brain tumors, and leptomeningeal carcinomatosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ISSN:2045-8118
2045-8118
DOI:10.1186/s12987-021-00303-x