尾缘加厚的DU系列翼型气动性能数值分析

为了研究不同最大相对厚度翼型尾缘加厚后气动性能变化情况,以3种不同最大相对厚度的DU系列翼型为对象,采用尾缘对称加厚方法对3种翼型进行修型处理,翼型的数值模拟计算结果表明:翼型尾缘对称加厚一方面可以减小吸力面后缘侧的压力梯度,抑制压力恢复,推迟边界层分离;另一方面可以增大翼型压力面与吸力面之间的压差,最大相对厚度较大的翼型压差增加幅度大。采用全湍流模型计算时,翼型尾缘加厚获得升力增量比自由转捩计算模型更大。随着尾缘厚度增加,小攻角下翼型获得的升力系数增量逐渐减小,而阻力则快速增大。当尾缘加厚厚度较大时,最大相对厚度较大的翼型获得的升力系数增量大于较小的最大相对厚度翼型。翼型最大升力系数随着翼型...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 17; pp. 101 - 108
Main Author 徐浩然 杨华 刘超
Format Journal Article
LanguageChinese
Published 扬州大学水利与能源动力工程学院,扬州,225009 2014
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.17.014

Cover

Loading…
More Information
Summary:为了研究不同最大相对厚度翼型尾缘加厚后气动性能变化情况,以3种不同最大相对厚度的DU系列翼型为对象,采用尾缘对称加厚方法对3种翼型进行修型处理,翼型的数值模拟计算结果表明:翼型尾缘对称加厚一方面可以减小吸力面后缘侧的压力梯度,抑制压力恢复,推迟边界层分离;另一方面可以增大翼型压力面与吸力面之间的压差,最大相对厚度较大的翼型压差增加幅度大。采用全湍流模型计算时,翼型尾缘加厚获得升力增量比自由转捩计算模型更大。随着尾缘厚度增加,小攻角下翼型获得的升力系数增量逐渐减小,而阻力则快速增大。当尾缘加厚厚度较大时,最大相对厚度较大的翼型获得的升力系数增量大于较小的最大相对厚度翼型。翼型最大升力系数随着翼型尾缘厚度的增大而增大,但是发生失速时,过大的升力系数会导致翼型升力急剧下降。为避免该现象发生,尾缘厚度应控制在约5%翼型弦长范围内。研究结果可以应用于钝尾缘翼型及风力机叶片设计,提高风力机的风能利用效率。
Bibliography:11-2047/S
Xu Haoran, Yang Hua, Liu Chao (College of Water Resources and Energy Power Engineering, Yangzhou University, Yangzhou 225009, China)
wind turbines; aerodynamics; numerical analysis; airfoil; blunt trailing edge; blade
In order to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord, in this paper, a method called blending function of exponential was used to enlarge the trailing edge of airfoil. The aerodynamic performance of blunt trailing edge airfoils generated from the DU91-W2-250, DU97-W-300 and DU96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to the chord to the trailing edge to 5%c and 10%c were analyzed by using CFD method at a chord Reynolds number of 3×106. c denotes the length of the chord line. The calculation domain is a circular domain with a radius of 50c. The airfoil surface was set as an adiabatic no-slip wall boundary condition.
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2014.17.014