可调振幅单向拽振式林果采收机构参数优化

为提高果园的采收作业效率,该文提出了一种振幅可连续调节的单向拽振式林果采收机构。该机构主要由输出直线往复振动激励的曲柄摇杆滑块机构和实现振幅调节功能的曲柄滑块机构组成。该文对振摇机构建立了运动学模型,推导得到机构行程与调幅量方程。在满足振摇幅度及调幅量要求的前提下,采用遗传算法对变幅振摇机构进行尺寸优化。根据优化结果建立了变幅振摇机构的三维模型,在ADAMS软件中对调幅曲柄和振摇曲柄同时转动时的振摇机构动力学特性进行仿真分析。在上述理论分析的基础上完成样机加工并开展8a树龄矮化山核桃田间采收试验,结果表明当调幅曲柄转速为7 r/min,振摇曲柄转动频率在5~14 Hz范围内连续变化时,振幅可调...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 16; pp. 25 - 32
Main Author 杜小强 倪柯楠 潘珂 陈少钟 高旗 武传宇
Format Journal Article
LanguageChinese
Published 浙江省种植装备技术重点实验室,杭州 310018%浙江理工大学机械与自动控制学院,杭州,310018 2014
浙江理工大学机械与自动控制学院,杭州 310018
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.16.004

Cover

More Information
Summary:为提高果园的采收作业效率,该文提出了一种振幅可连续调节的单向拽振式林果采收机构。该机构主要由输出直线往复振动激励的曲柄摇杆滑块机构和实现振幅调节功能的曲柄滑块机构组成。该文对振摇机构建立了运动学模型,推导得到机构行程与调幅量方程。在满足振摇幅度及调幅量要求的前提下,采用遗传算法对变幅振摇机构进行尺寸优化。根据优化结果建立了变幅振摇机构的三维模型,在ADAMS软件中对调幅曲柄和振摇曲柄同时转动时的振摇机构动力学特性进行仿真分析。在上述理论分析的基础上完成样机加工并开展8a树龄矮化山核桃田间采收试验,结果表明当调幅曲柄转速为7 r/min,振摇曲柄转动频率在5~14 Hz范围内连续变化时,振幅可调的单向拽振式林果采收机构能够实现山核桃的采收,平均采收率为63.9%。
Bibliography:11-2047/S
The fruit harvester is one of the most common machines in orchards. However, current mechanical harvesters are not suitable for orchard harvesting due to fixed operating parameters, especially the frequency and amplitude. Therefore, a monodirectional pulling fruit harvester with adjustable stroke was proposed based on slider-crank mechanism to improve the harvesting efficiency. The harvester consisted mainly of the case, a steel cable, and a front actuator. In particular, the shaking mechanism in the case was composed of one crank-rocker-slider mechanism and one crank-slider mechanism. The former was used to generate linear reciprocating vibration and the latter to adjust stroke. The stroke changed with the angle of the stroke-adjusting crank. Furthermore,a kinematic model of the shaking mechanism was established to describe its stroke and range dynamics. In order to define the influence of linkage length on the stroke and range, a program was developed based on the displacement equation of the shaki
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2014.16.004