Multiple Conductances Cooperatively Regulate Spontaneous Bursting in Mouse Olfactory Bulb External Tufted Cells

External tufted (ET) cells are juxtaglomerular neurons that spontaneously generate bursts of action potentials, which persist when fast synaptic transmission is blocked. The intrinsic mechanism of this autonomous bursting is unknown. We identified a set of voltage-dependent conductances that coopera...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 28; no. 7; pp. 1625 - 1639
Main Authors Liu, Shaolin, Shipley, Michael T
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 13.02.2008
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:External tufted (ET) cells are juxtaglomerular neurons that spontaneously generate bursts of action potentials, which persist when fast synaptic transmission is blocked. The intrinsic mechanism of this autonomous bursting is unknown. We identified a set of voltage-dependent conductances that cooperatively regulate spontaneous bursting: hyperpolarization-activated inward current (I(h)), persistent Na+ current (I(NaP)), low-voltage-activated calcium current (I(L/T)) mediated by T- and/or L-type Ca2+ channels, and large-conductance Ca2+-dependent K+ current (I(BK)). I(h) is important in setting membrane potential and depolarizes the cell toward the threshold of I(NaP) and I(T/L), which are essential to generate the depolarizing envelope that is crowned by a burst of action potentials. Action potentials depolarize the membrane and induce Ca2+ influx via high-voltage-activated Ca2+ channels (I(HVA)). The combined depolarization and increased intracellular Ca2+ activates I(BK), which terminates the burst by hyperpolarizing the membrane. Hyperpolarization activates I(h) and the cycle is regenerated. A novel finding is the role of L-type Ca2+ channels in autonomous ET cells bursting. A second novel feature is the role of BK channels, which regulate burst duration. I(L) and I(BK) may go hand-in-hand, the slow inactivation of I(L) requiring I(BK)-dependent hyperpolarization to deactivate inward conductances and terminate the burst. ET cells receive monosynaptic olfactory nerve input and drive the major inhibitory interneurons of the glomerular circuit. Modulation of the conductances identified here can regulate burst frequency, duration, and spikes per burst in ET cells and thus significantly shape the impact of glomerular circuits on mitral and tufted cells, the output channels of the olfactory bulb.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.3906-07.2008